pythonserieslist
‘壹’ python中如何提取一组数据中的第一列数据
概述
直接提取会报错,把array数组转换成list,即可提取,使用numpy转换
步骤详解
1、直接提取尝试:
group=[[1,2],[2,3],[3,4]]
#提取第一列元素
print(group[:,1])
#Out:TypeError: list indices must be integers or slices, not tuple
2、使用numpy转换:
import numpy as np
group=[[1,2],[2,3],[3,4]]
#numpy转化
ar=np.array(group)
print(ar[:,1])
#Out:[2 3 4]
拓展内容
numpy详解
Numpy对象是数组,称为ndarray
维度(dimensions)称作轴(axes),轴的个数叫做秩(rank)。注:有几级中括号就有几个维度
一、ndarray.attrs:
ndarray.ndim 秩
ndarray.shape 例如一个2排3列的矩阵,它的shape属性是(2,3)
ndarray.size 数组元素的总个数
ndarray.dtype 元素类型,NumPy提供自己的数据类型
ndarray.itemsize 数组中每个元素的字节大小
二、数组创建函数:
array
asarray将输入转换成ndarray
arange
ones
zeros
empty 只分配内存空间不填充任何值
eye 创建N*N单位矩阵(对角线为1)
三、数组和标量之间的运算
numpy数组的一个特点,不用编写循环就可对数据执行批量运算,这通常称作矢量化(vectorization)。
四、基本的索引和切片
numpy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。这里我仅详细介绍常用的方法,对于高级功能的方式我列举名称,读者可以等到要用的时候自行查阅资料。
‘贰’ Python中如何对series里所有的值取对数
以后应多使用论坛中的Eviews专区。
ln在Eviews中表示为log,如数学中的ln(Q)在Eviews中表示为log(Q)
直接定义啊 y=log(x) 在软件中log,论文模型中ln不用取对数直接在估计的时候用 log( )就好了
如果真要取的话
quick\ generate series\
输入新变量,比如 r=log( )
r就是取完对数后的序列
在工作文件中先定义一个新的变量Y(假设原变量是w,已存在的变量),然后在工作文件中点击genr,在方程中输入Y=log(w),确定。
series y=log(x)
在最小二乘里面输入log(y) log(x) c也可以
产生个新变量:输入命令y=log()
‘叁’ python 判断某个列表中的所有元素在另一个列表中
你这个标题怎么跟内容不一致。
判断一个列表中的元素是否都在另一个列表中,用集合就可以了。
>>>l1=['a','b','c']
>>>l2=['d','b','c','a']
>>>set(l1).issubset(set(l2))
True
>>>
‘肆’ 请描述下Python中Series和Array和List有何异同
Series是pandas中的结构,
Array是numpy的结构
list是python原生结构
它们都是数组结构。
层次看Series>array>list 也就是功能越来越易用,限制也会越来越多,而且高层可以往低层转,
Series还有索引,这是array list都没有的;
‘伍’ 怎么查找python列表中元素的位置
Python中查找list中某个固定元素是常有的事,对于两种不同的查找有两种不同的解决方案,见下。
查找元素首次出现的位置:
list自带的方法index可以找出某元素在list中首次出现的位置,用法为:
(5)pythonserieslist扩展阅读:
序列是Python中最基本的数据结构。序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推。
Python有6个序列的内置类型,但最常见的是列表和元组。序列都可以进行的操作包括索引,切片,加,乘,检查成员。
此外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法。列表是最常用的Python数据类型,它可以作为一个方括号内的逗号分隔值出现。列表的数据项不需要具有相同的类型。
‘陆’ 如何在python列表中查找某个元素的索引
1、方法一: 利用数组自身的特性 a.index(target), 其中a是目标list,target是需要的下标对应的值。代码如下:
2、分片:
分片用于截取某个范围内的元素,通过:来指定起始区间(左闭右开区间,包含左侧索引值对应的元素,但不包含右测索引值对应的元素)。
分片包括起始索引对应的元素,但不包括终止索引对应的元素,索引为正值时可以发生越界但只会取到最后一个元素。如果索引值为负值,则表示从最右边元素开始,此时需避免索引越界。
‘柒’ python 列表中删除 部分一些符合条件的值
>>>list=[None,None,None,None,"a","b","c",None,"d",12,None,2,4,5,4]
>>>list=list[4:]
>>>len(list)
11
>>>list
['a','b','c',None,'d',12,None,2,4,5,4]
>>>
#如果你的list格式是相同的比如前面4个都是None,这个格式是固定的,那么切片很容易解决
‘捌’ Python的pandas 数组如何得到索引值,如图,我要得到ohio 的索引值,应该怎样做
直接上实例:
df = pd.DataFrame(np.random.randn(5,3),index = list('abcde'),columns = ['one','two','three']) #创建一个数据框
df 内容
第一个arrary代表第几行,第二个代表第几列。
如,如何条件的元素存在在:第一行第三列,第三行第一列,....
‘玖’ pandas将某一行设置为列索引(python)
b[b.['state']=='ohio'].index
In [36]: list(df['state']).index('ohio')
Out[36]: 0
In [37]: list(df['state']).index('nevada')
Out[37]: 1
访问某一列可以通过b['state']和b.state这两种方法进行,但是输出的pandas里面的Series这种数据类型,因此b['state'].index()返回Index([0,1], dtype=object)。
因为数据分析知某个值并不是非常重要,所以没有直接输出索引值的函数,可以通过query()函数,b.query('state == "obio"'),输出含有ohio的行自然也就知道索引。
(9)pythonserieslist扩展阅读:
索引是为了加速对表中数据行的检索而创建的一种分散的存储结构。索引是针对表而建立的,它是由数据页面以外的索引页面组成的,每个索引页面中的行都会含有逻辑指针,以便加速检索物理数据。
在数据库关系图中,可以在选定表的“索引/键”属性页中创建、编辑或删除每个索引类型。当保存索引所附加到的表,或保存该表所在的关系图时,索引将保存在数据库中。
在数据库系统中建立索引主要有以下作用:
(1)快速取数据;
(2)保证数据记录的唯一性;
(3)实现表与表之间的参照完整性;
(4)在使用ORDER by、group by子句进行数据检索时,利用索引可以减少排序和分组的时间。