python学习程序
python编程开发技术是目前比较热门的编程语言之一了,而对于大多数新接触python编程的程序员来说,如果能够掌握一定的编程技巧的话会大大降低我们掌握python编程的难度,下面IT培训http://www.kmbdqn.cn/就一起来了解一下具体内容吧。
建议1:理解Pythonic概念
建议2:编写Pythonic代码
建议3:理解Python与c语言的不同之处
建议4:在代码中适当添加注释
建议5:通过适当添加空行使代码布局更为优雅、合理
建议6:编写函数的4个原则
建议7:将常量集中到一个文件
建议8:利用assert语句来发现问题
建议9:数据交换值的时候不推荐使用中间变量
建议10:充分利用Lazyevaluation的特性
建议11:理解枚举替代实现的缺陷
建议12:不推荐使用type来进行类型检查
建议13:尽量转换为浮点类型后再做除法
建议14:警惕eval()的安全漏洞
建议15:使用enumerate()获取序列迭代的索引和值
建议16:分清=与is的适用场景
建议17:考虑兼容性,尽可能使用Unicode
建议18:构建合理的包层次来管理mole
建议19:有节制地使用from?import语句
建议20:优先使用absoluteimport来导入模块
建议21:i+=1不等于++i
建议22:使用with自动关闭资源
建议23:使用else子句简化循环(异常处理)
建议24:遵循异常处理的几点基本原则
建议25:避免finally中可能发生的陷阱
建议26:深人理解None,正确判断对象是否为空
建议27:连接字符串应优先使用join而不是+
建议28:格式化字符串时尽量使用.format方式而不是%
建议29:区别对待可变对象和不可变对象
建议30:[]、()和{}:一致的容器初始化形式
建议31:记住函数传参既不是传值也不是传引用
建议32:警惕默认参数潜在的问题
建议33:慎用变长参数
建议34:深入理解str()和repr()的区别
Ⅱ 初学者学习python编程有哪些方法
一、设置一个闹钟提前30分钟起床
你每天学习Python的最佳时间是在早晨。
从生物学角度来讲,一个人脑子最清醒的时间是每日清晨起床后的两个小时。如果不想浪费自己的脑细胞,那就晚上早睡,第二天早点起床,这样就可以在上课或上班前练习一下。
如果能提前给自己安排好学习的计划和内容,就能很大程度的提升学习效率,达到事半功倍的效果。一个简单的办法就是给自己一个“约定”:告诉自己,每天只花30分钟来学习Python,学完之后才能看手机刷网络等。
也许有的人会说,晚上熬夜写代码效率更高,其实这种想法是不可取的。因为熬夜给身体带来的伤害大家有目共睹,每年过劳死的人不在少数。而且熬夜会造成记忆力衰退,你会发现晚上学习真的记不住多少东西。
二、多利用周末或假期的空闲时间学习Python
这条建议看起来有点过分,有的人会说,过个周末不容易,还要挤出时间学习太累了。
其实,如果对一天的休息时间进行细分,就能做到玩好的同时又能学习Python。在这里分享一下我自己的作息规律表:
8:00起床,睡个懒觉。8:00——9:00吃饭时间。9:00——10:00看书学习时间。10:00——12:00出游时间。12:00——13:00午饭时间。13:00——15:00午休时间。15:00——18:00学习时间。18:00——19:00晚饭时间。19:00——20:00游戏时间。20:00——23:00学习和写作时间。23:00以后刷刷网络等,12点前睡觉,保证晚上至少有6个小时高质量睡眠时间。
当然了,具体的时间安排可以灵活调整,最重要的是要有一种自制力,娱乐要有度。
三、多做题
这一点就不用多说了吧,要想学好编程没有捷径。正确的学习方法,加上大量的代码练习,才能学好一门编程语言。
关于初学者学习python编程有哪些方法,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅲ python程序设计主要学什么
Python的学习内容还是比较多的,我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:
Python学习顺序:
①Python软件开发基础
掌握计算机的构成和工作原理
会使用linux常用工具
熟练使用Docker的基本命令
建立Python开发环境,并使用print输出
使用Python完成字符串的各种操作
使用Python re模块进行程序设计
使用Python创建文件、访问、删除文件
掌握import 语句、From…import 语句、From…import* 语句、方法的引用、Python中的包
能够使用Python面向对象方法开发软件
能够自己建立数据库,表,并进行基本数据库操作
掌握非关系数据库MongoDB的使用,掌握Redis开发
能够独立完成TCP/UDP服务端客户端软件开发,能够实现ftp、http服务器,开发邮件软件
能开发多进程、多线程软件
能够独立完成后端软件开发,深入理解Python开发后端的精髓
能够独立完成前端软件开发,并和后端结合,熟练掌握使用Python进行全站Web开发的技巧
能够使用Python熟练编写爬虫软件
能够熟练使用Python库进行数据分析
招聘网站Python招聘职位数据爬取分析
掌握使用Python开源人工智能框架进行人工智能软件开发、语音识别、人脸识别
掌握基本设计模式、常用算法
掌握软件工程、项目管理、项目文档、软件测试调优的基本方法
②Python软件开发进阶
③Python全栈式WEB工程师
④Python多领域开发
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,中博软件学院、南京课工场、南京北大青鸟等开设python专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
Ⅳ python入门教程
给大家整理的这套python学习路线图,按照此教程一步步的学习来,肯定会对python有更深刻的认识。或许可以喜欢上python这个易学,精简,开源的语言。此套教程,不但有视频教程,还有源码分享,让大家能真正打开python的大门,进入这个领域。现在互联网巨头,都已经转投到人工智能领域,而人工智能最好的编程语言就是python,未来前景显而易见。黑马程序员是国内最早开设人工智能的机构。一、首先先推荐一个教程
8天深入理解python教程:http://pan..com/s/1kVNmOar
主要讲解,python开发环境的构建,基础的数据类型,字符串如何处理等简单的入门级教程。
二、第二个教程,是系统的基础知识,学习周期大概一个月左右的时间,根据自己的学习能力吸收能力来定。 初学者只要跟着此套教程学习,入门完全没有问题。
学完后可掌握的核心能力
1、掌握基本的Linux系统操作;
2、掌握Python基础编程语法;
3、建立起编程思维和面向对象思想;
可解决的现实问题:
字符串排序,切割,逆置;猜数字、飞机大战游戏;
市场价值:
具备编程思维,掌握Python基本语法,能开发出一些小游戏
所涉及知识点:
教程地址:http://pan..com/s/1i5mfB4D
三、拓展教程
1、网络爬虫-利用python实现爬取网页神技
第一天:https://pan..com/s/1b3CXYI
第二天:
2、Python之web开发利刃
第一天:
第二天:
3、python之大数据开发奇兵
Ⅳ 学习python都需要哪些软件工具
1、Upterm
它是一个全平台的终端,可以说是终端里的IDE,有着强大的自动补全功能。之前的名字叫BlackWindow,有人跟他说这个名字不利于社区推广,改名叫Upterm之后现在已经17000+Star了。
2、Ptpython
一个交互式的Python解释器。支持语法高亮、提示甚至是vim和emacs的键入模式。
3、Anaconda
它能帮你安装好许多麻烦的东西,包括:Python环境、pip包管理工具、常用的库、配置好环境路径等等。这些事情小白自己一个个去做的话,容易遇到各种问题,带来挫败感。如果你想用Python搞数据方面的事情,就安装它就好了,它甚至开发了一套JIT的解释器 Numba。所以Anaconda有了JIT之后,对线上科学计算效率要求比较高的东西也可以搞了。
4、CodeSandbox
虽然这个不算是Python开发工具,但如果后端工程师想写前端的话,这个在线编辑器太方便了,简直是节省了后端工程师的生命啊!不用安装npm的几千个包了,它已经在云端完成了,采让你直接就可以上手写代码、看效果。对于React、Vue这些主流前端框架都支持。
5、Pycharm
Pycharm是程序员常常使用的开发工具,简单、易用,并且能够设置不同的主题模式,根据自己的喜好来设置代码风格。
6、IPython
如何进行交互式编程?没错,就是通过IPython。IPython相对于Python自带的Shell要好用的多,并且能够支持代码缩进、Tab键补全代码等功能。如果进行交互式编程,这是不可缺少的工具。
7、Python Tutor
这个工具可能对初学者比较有用,而对于中高级程序员则用处较少。这个工具的特色是能够清楚的理解每一行代码是如何在计算机中执行的,中高级程序员一般通过分步调试可以实现类似的功能。这个工具对于最初接触Python、最初来学习编程的同学还是非常有用的,初学者不妨体验看看。
8、IDLE
IDLE是python创初人Guido van Rossum使用python and Tkinter来创建的一个集成开发环境。要使用IDLE必须安装python and Tkinter。特性:自动缩进,彩色编码,命令历史(Alt+p,Alt+n)和单词自动(Alt+/)完成。用IDLE执行Tkinter程序,不要在程序中包括mainloop。IDLE本身就是Tkinter应用程序,它会自动调用mainloop。再调用一次mainloop会与IDLE的事件循环冲突,造成运行时错误。
9、BlackAdder
BlackAdder支持windows and linux环境。用它创建的程序可在任何一种平台上运行,负责维护它的是TheKompany.com。他们发布了该软件的个人版,只提供有限的支持;以及专业版,需要许可,面向商业软件开发者。
10、Komodo Edit
Open Komodo是Komodo edit的开源发布 ,一个免费的动态语言的多语言编辑器,基于屡获殊荣的Komodo IDE。既支持Perl、PHP、Python、Ruby、Tcl等服务端语言,也支持CSS、HTML、JavaScript、XML等。在使用Komodo Edit编写代码时,通过其提供的自动完成、调用提示、语法纠正、代码片断等功能可以充分提高你的编码效率,助你写出高质量的代码。
Ⅵ 如何快速学习Python
一、Python是一种计算机程序设计语言。
你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网页编程的JavaScript语言等等。
二、那Python是一种什么语言?
首先,我们普及一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,编写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言差异极大,最后都得“翻译”成CPU可以执行的机器指令。而不同的编程语言,编写的代码量,差距也很大。
比如,完成同一个任务,C语言要写1000行代码,Java只需要写100行,而Python可能只要20行。
三、所以Python是一种相当高级的语言。
1、你也许会问,代码少还不好?代码少的代价是运行速度慢,C程序运行1秒钟,Java程序可能需要2秒,而Python程序可能就需要10秒。
2、那是不是越低级的程序越难学,越高级的程序越简单?表面上来说,是的,但是,在非常高的抽象计算中,高级的Python程序设计也是非常难学的,所以,高级程序语言不等于简单。
3、但是,对于初学者和完成普通任务,Python语言是非常简单易用的。连Google都在大规模使用Python,你就不用担心学了会没用。
4、用Python可以做什么?可以做日常任务,比如自动备份你的MP3;可以做网站,很多着名的网站包括YouTube就是Python写的;可以做网络游戏的后台,很多在线游戏的后台都是Python开发的。总之就是能干很多很多事啦。
5、Python当然也有不能干的事情,比如写操作系统,这个只能用C语言写;写手机应用,只能用Swift/Objective-C(针对iPhone)和Java(针对Android);写3D游戏,最好用C或C++。
四、如果你是小白用户,满足以下条件:
会使用电脑,但从来没写过程序;
还记得初中数学学的方程式和一点点代数知识;
想从编程小白变成专业的软件架构师;
每天能抽出半个小时学习,不要再犹豫了,这个教程就是为你准备的!准备好了吗?
Ⅶ 学习python的话大概要学习哪些内容
想要学习Python,需要掌握的内容还是比较多的,对于自学的同学来说会有一些难度,不推荐自学能力差的人。我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:
Python学习顺序:
①Python软件开发基础
掌握计算机的构成和工作原理
会使用Linux常用工具
熟练使用Docker的基本命令
建立Python开发环境,并使用print输出
使用Python完成字符串的各种操作
使用Python re模块进行程序设计
使用Python创建文件、访问、删除文件
掌握import 语句、From…import 语句、From…import* 语句、方法的引用、Python中的包
能够使用Python面向对象方法开发软件
能够自己建立数据库,表,并进行基本数据库操作
掌握非关系数据库MongoDB的使用,掌握Redis开发
能够独立完成TCP/UDP服务端客户端软件开发,能够实现ftp、http服务器,开发邮件软件
能开发多进程、多线程软件
能够独立完成后端软件开发,深入理解Python开发后端的精髓
能够独立完成前端软件开发,并和后端结合,熟练掌握使用Python进行全站Web开发的技巧
能够使用Python熟练编写爬虫软件
能够熟练使用Python库进行数据分析
招聘网站Python招聘职位数据爬取分析
掌握使用Python开源人工智能框架进行人工智能软件开发、语音识别、人脸识别
掌握基本设计模式、常用算法
掌握软件工程、项目管理、项目文档、软件测试调优的基本方法
②Python软件开发进阶
③Python全栈式WEB工程师
④Python多领域开发
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,南京北大青鸟、中博软件学院、南京课工场等都是不错的选择,建议实地考察对比一下。
祝你学有所成,望采纳。
Ⅷ python怎么学习
对于很多想学习Python的小伙伴来说,不知道从何开始,小蜗这里整理了一份Python全栈开发的学习路线,大家可按照以下这份大纲来进行学习:
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握Python的开发环境与编程核心知识
2. 熟练运用Python面向对象知识进行程序开发
3. 对Python的核心库和组件有深入理解
4. 熟练应用sql语句进行数据库常用操作
5. 熟练运用Linux操作系统命令及环境配置
6. 熟练使用MySQL,掌握数据库高级操作
7. 能综合运用所学知识完成项目
知识点:
Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。
1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。
2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。
4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。
5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。
第二阶段:PythonWEB开发
阶段目标:
1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系统中的前后端交互过程与通信协议
3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发
4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识
5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理
6. 使用Web开发框架实现贯穿项目
知识点:
Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。
1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。
2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。
3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。
4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。
第三阶段:爬虫与数据分析
阶段目标:
1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析
2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取
3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理
4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取
5. 熟练掌握数据分析相关概念及工作流程
6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用
7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写
8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战
知识点:
网络爬虫开发、数据分析之Numpy、数据分析之Pandas。
1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。
2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。
3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。
4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。
第四阶段:机器学习与人工智能
阶段目标:
1. 理解机器学习相关的基本概念及系统处理流程
2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题
3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等
4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等
5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目
知识点:
1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。
2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。
Ⅸ 如何自学编程python
首先先了解Python语言的四大发展方向。目前Python的主要方向有web后端开发、大数据分析网络爬虫和人工智能,当然如果再细分的话还有自动化测试、运维等方向。
在学习Python的基础语法时,并不需要太多的基础,基本只要熟练使用电脑日常功能并对Python感兴趣就可以了,但如果想要在人工智能领域方向发展的话,线性代数、概率、统计等高等数学知识基本是必需的,原因在于这些知识能够让你的逻辑更加清晰,在编程过程中有更强的思路。
分享一个千锋Python的学习大纲给你
第一阶段 - Python 数据科学
Python 基础语法
入门及环境安装 、基本语法与数据类型、控制语句、错误及异常、错误处理方法、异常处理方法 、常用内置函数 、函数创建与使用、Python 高级特性、高级函数、Python 模块、PythonIO 操作 、日期与时间 、类与面向对象 、Python 连接数据库
Python 数据清洗
数字化 Python 模块Numpy、数据分析利器Pandas、Pandas 基本操作、Pandas 高级操作
Python 数据可视化
数据可视化基础、MLlib(RDD-Base API)机器学习、MatPlotlib 绘图进阶、高级绘图工具
第二阶段 - 商业数据可视化
Excel 业务分析
Excel 基础技能、Excel 公式函数、图表可视化、人力 & 财务分析案例、商业数据分析方法、商业数据分析报告
Mysql 数据库
Mysql 基础操作(一)、Mysql 基础操作(二)、Mysql 中级操作、Mysql 高级操作、电商数据处理案例
PowerBI
初级商业智能应用 (PowerQuery)、初级商业智能应用 (PowerPivot)、初级商业智能应用案例、存储过程、PowerBI Desktop 案例、PowerBI Query 案例
统计学基础
微积分、线性代数基础、统计基础
Tableau
Tableau 基本操作、Tableau 绘图、Tableau 数据分析、Tableau 流量分析
SPSS
客户画像、客户价值模型、神经网络、决策树、时间序列
第三阶段 - Python 机器学习
Python 统计分析
数据准备、一元线性回归、多元线性回归、一般 logistic 回归、ogistic 回归与修正
Python 机器学习基础
机器学习入门、KNN 讲义、模型评估方法、模型优化方法、Kmeans、DBSCAN、决策树算法实战
Python 机器学习中级
线性回归、模型优化方法、逻辑回归、朴素贝叶斯、关联规则、协同过滤、推荐系统案例
Python 机器学习高级
集成算法 - 随机森林、集成算法 -AdaBoost、数据处理和特征工程、SVM、神经网络、XGBoost
第四阶段 - 项目实战
电商市场数据挖掘项目实战
项目背景 & 业务逻辑 、指定分析策略 、方法实现与结果 、营销活动设计及结果评价 、撰写数据分析报告
金融风险信用评估项目实战
项目背景 & 业务逻辑 、建模准备 、数据清洗 、模型训练 、模型评估 、模型部署与更新
第五阶段 - 数据采集
爬虫类库解析 、数据解析 、动态网页提取 、验证码、IP 池 、多线程爬虫 、反爬应对措施 、scrapy 框架
第六阶段 - 企业课
团队户外拓展训练 、企业合作项目课程 、管理课程 、沟通表达训练 、职业素养课程
以上就是零基础Python学习路线的所有内容,希望对大家的学习有所帮助。