神经网络python实现
A. 如何用python和scikit learn实现神经网络
1:神经网络算法简介
2:Backpropagation算法详细介绍
3:非线性转化方程举例
4:自己实现神经网络算法NeuralNetwork
5:基于NeuralNetwork的XOR实例
6:基于NeuralNetwork的手写数字识别实例
7:scikit-learn中BernoulliRBM使用实例
8:scikit-learn中的手写数字识别实例
一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最着名的是backpropagation
2:多层向前神经网络(Multilayer Feed-Forward Neural Network)
B. python简单神经网络的实现 求问这儿是怎么实现syn0均值为0的,以及我在Python3中运行发现l1的shape也不对
np.random.random 返回[0,1)区间的随机数,2*np.random.random - 1 返回[-1,1)的随机数,具体可以看网页链接
看这个神经网络结构应该就输入输出两层,l1的shape为np.dot(l0,syn0),[4*3],[3*1]的矩阵相乘得到[4*1]的矩阵,y = np.array([[0,1,1,0]]).T,y也是[4*1]的矩阵
C. 关于神经网络 需要学习python的哪些知识
多读文档 应该是库 库也是python基础编写的 多读多看
D. 如何用 Python 构建神经网络择时模型
import math
import random
random.seed(0)
def rand(a,b): #随机函数
return (b-a)*random.random()+a
def make_matrix(m,n,fill=0.0):#创建一个指定大小的矩阵
mat = []
for i in range(m):
mat.append([fill]*n)
return mat
#定义sigmoid函数和它的导数
def sigmoid(x):
return 1.0/(1.0+math.exp(-x))
def sigmoid_derivate(x):
return x*(1-x) #sigmoid函数的导数
class BPNeuralNetwork:
def __init__(self):#初始化变量
self.input_n = 0
self.hidden_n = 0
self.output_n = 0
self.input_cells = []
self.hidden_cells = []
self.output_cells = []
self.input_weights = []
self.output_weights = []
self.input_correction = []
self.output_correction = []
#三个列表维护:输入层,隐含层,输出层神经元
def setup(self,ni,nh,no):
self.input_n = ni+1 #输入层+偏置项
self.hidden_n = nh #隐含层
self.output_n = no #输出层
#初始化神经元
self.input_cells = [1.0]*self.input_n
self.hidden_cells= [1.0]*self.hidden_n
self.output_cells= [1.0]*self.output_n
#初始化连接边的边权
self.input_weights = make_matrix(self.input_n,self.hidden_n) #邻接矩阵存边权:输入层->隐藏层
self.output_weights = make_matrix(self.hidden_n,self.output_n) #邻接矩阵存边权:隐藏层->输出层
#随机初始化边权:为了反向传导做准备--->随机初始化的目的是使对称失效
for i in range(self.input_n):
for h in range(self.hidden_n):
self.input_weights[i][h] = rand(-0.2 , 0.2) #由输入层第i个元素到隐藏层第j个元素的边权为随机值
for h in range(self.hidden_n):
for o in range(self.output_n):
self.output_weights[h][o] = rand(-2.0, 2.0) #由隐藏层第i个元素到输出层第j个元素的边权为随机值
#保存校正矩阵,为了以后误差做调整
self.input_correction = make_matrix(self.input_n , self.hidden_n)
self.output_correction = make_matrix(self.hidden_n,self.output_n)
#输出预测值
def predict(self,inputs):
#对输入层进行操作转化样本
for i in range(self.input_n-1):
self.input_cells[i] = inputs[i] #n个样本从0~n-1
#计算隐藏层的输出,每个节点最终的输出值就是权值*节点值的加权和
for j in range(self.hidden_n):
total = 0.0
for i in range(self.input_n):
total+=self.input_cells[i]*self.input_weights[i][j]
# 此处为何是先i再j,以隐含层节点做大循环,输入样本为小循环,是为了每一个隐藏节点计算一个输出值,传输到下一层
self.hidden_cells[j] = sigmoid(total) #此节点的输出是前一层所有输入点和到该点之间的权值加权和
for k in range(self.output_n):
total = 0.0
for j in range(self.hidden_n):
total+=self.hidden_cells[j]*self.output_weights[j][k]
self.output_cells[k] = sigmoid(total) #获取输出层每个元素的值
return self.output_cells[:] #最后输出层的结果返回
#反向传播算法:调用预测函数,根据反向传播获取权重后前向预测,将结果与实际结果返回比较误差
def back_propagate(self,case,label,learn,correct):
#对输入样本做预测
self.predict(case) #对实例进行预测
output_deltas = [0.0]*self.output_n #初始化矩阵
for o in range(self.output_n):
error = label[o] - self.output_cells[o] #正确结果和预测结果的误差:0,1,-1
output_deltas[o]= sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内
#隐含层误差
hidden_deltas = [0.0]*self.hidden_n
for h in range(self.hidden_n):
error = 0.0
for o in range(self.output_n):
error+=output_deltas[o]*self.output_weights[h][o]
hidden_deltas[h] = sigmoid_derivate(self.hidden_cells[h])*error
#反向传播算法求W
#更新隐藏层->输出权重
for h in range(self.hidden_n):
for o in range(self.output_n):
change = output_deltas[o]*self.hidden_cells[h]
#调整权重:上一层每个节点的权重学习*变化+矫正率
self.output_weights[h][o] += learn*change + correct*self.output_correction[h][o]
#更新输入->隐藏层的权重
for i in range(self.input_n):
for h in range(self.hidden_n):
change = hidden_deltas[h]*self.input_cells[i]
self.input_weights[i][h] += learn*change + correct*self.input_correction[i][h]
self.input_correction[i][h] = change
#获取全局误差
error = 0.0
for o in range(len(label)):
error = 0.5*(label[o]-self.output_cells[o])**2 #平方误差函数
return error
def train(self,cases,labels,limit=10000,learn=0.05,correct=0.1):
for i in range(limit): #设置迭代次数
error = 0.0
for j in range(len(cases)):#对输入层进行访问
label = labels[j]
case = cases[j]
error+=self.back_propagate(case,label,learn,correct) #样例,标签,学习率,正确阈值
def test(self): #学习异或
cases = [
[0, 0],
[0, 1],
[1, 0],
[1, 1],
] #测试样例
labels = [[0], [1], [1], [0]] #标签
self.setup(2,5,1) #初始化神经网络:输入层,隐藏层,输出层元素个数
self.train(cases,labels,10000,0.05,0.1) #可以更改
for case in cases:
print(self.predict(case))
if __name__ == '__main__':
nn = BPNeuralNetwork()
nn.test()
E. 怎样用python构建一个卷积神经网络模型
上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出。实验输入仍然采用MNIST图像使用10个feature map时,卷积和pooling的结果分别如下所示。
部分源码如下:
[python]view plain
#coding=utf-8
'''''
Createdon2014年11月30日
@author:Wangliaofan
'''
importnumpy
importstruct
importmatplotlib.pyplotasplt
importmath
importrandom
import
#test
defsigmoid(inX):
if1.0+numpy.exp(-inX)==0.0:
return999999999.999999999
return1.0/(1.0+numpy.exp(-inX))
defdifsigmoid(inX):
returnsigmoid(inX)*(1.0-sigmoid(inX))
deftangenth(inX):
return(1.0*math.exp(inX)-1.0*math.exp(-inX))/(1.0*math.exp(inX)+1.0*math.exp(-inX))
defcnn_conv(in_image,filter_map,B,type_func='sigmoid'):
#in_image[num,featuremap,row,col]=>in_image[Irow,Icol]
#featuresmap[kfilter,row,col]
#type_func['sigmoid','tangenth']
#out_feature[kfilter,Irow-row+1,Icol-col+1]
shape_image=numpy.shape(in_image)#[row,col]
#print"shape_image",shape_image
shape_filter=numpy.shape(filter_map)#[kfilter,row,col]
ifshape_filter[1]>shape_image[0]orshape_filter[2]>shape_image[1]:
raiseException
shape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)
out_feature=numpy.zeros(shape_out)
k,m,n=numpy.shape(out_feature)
fork_idxinrange(0,k):
#rotate180tocalculateconv
c_filter=numpy.rot90(filter_map[k_idx,:,:],2)
forr_idxinrange(0,m):
forc_idxinrange(0,n):
#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))
conv_temp=numpy.dot(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)
sum_temp=numpy.sum(conv_temp)
iftype_func=='sigmoid':
out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])
eliftype_func=='tangenth':
out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])
else:
raiseException
returnout_feature
defcnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):
k,row,col=numpy.shape(out_feature)
max_index_Matirx=numpy.zeros((k,row,col))
out_row=int(numpy.floor(row/pooling_size))
out_col=int(numpy.floor(col/pooling_size))
out_pooling=numpy.zeros((k,out_row,out_col))
fork_idxinrange(0,k):
forr_idxinrange(0,out_row):
forc_idxinrange(0,out_col):
temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]
out_pooling[k_idx,r_idx,c_idx]=numpy.amax(temp_matrix)
max_index=numpy.argmax(temp_matrix)
#printmax_index
#printmax_index/pooling_size,max_index%pooling_size
max_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1
returnout_pooling,max_index_Matirx
defpoolwithfunc(in_pooling,W,B,type_func='sigmoid'):
k,row,col=numpy.shape(in_pooling)
out_pooling=numpy.zeros((k,row,col))
fork_idxinrange(0,k):
forr_idxinrange(0,row):
forc_idxinrange(0,col):
out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])
returnout_pooling
#out_featureistheoutputofconv
defbackErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):
k1,row,col=numpy.shape(out_feature)
error_conv=numpy.zeros((k1,row,col))
k2,theta_row,theta_col=numpy.shape(theta)
ifk1!=k2:
raiseException
foridx_kinrange(0,k1):
foridx_rowinrange(0,row):
foridx_colinrange(0,col):
error_conv[idx_k,idx_row,idx_col]=
max_index_Matirx[idx_k,idx_row,idx_col]*
float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*
difsigmoid(out_feature[idx_k,idx_row,idx_col])
returnerror_conv
defbackErrorfromConvToInput(theta,inputImage):
k1,row,col=numpy.shape(theta)
#print"theta",k1,row,col
i_row,i_col=numpy.shape(inputImage)
ifrow>i_roworcol>i_col:
raiseException
filter_row=i_row-row+1
filter_col=i_col-col+1
detaW=numpy.zeros((k1,filter_row,filter_col))
#thesamewithconvvalidinmatlab
fork_idxinrange(0,k1):
foridx_rowinrange(0,filter_row):
foridx_colinrange(0,filter_col):
subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]
#print"subInputMatrix",numpy.shape(subInputMatrix)
#rotatetheta180
#printnumpy.shape(theta)
theta_rotate=numpy.rot90(theta[k_idx,:,:],2)
#print"theta_rotate",theta_rotate
dotMatrix=numpy.dot(subInputMatrix,theta_rotate)
detaW[k_idx,idx_row,idx_col]=numpy.sum(dotMatrix)
detaB=numpy.zeros((k1,1))
fork_idxinrange(0,k1):
detaB[k_idx]=numpy.sum(theta[k_idx,:,:])
returndetaW,detaB
defloadMNISTimage(absFilePathandName,datanum=60000):
images=open(absFilePathandName,'rb')
buf=images.read()
index=0
magic,numImages,numRows,numColumns=struct.unpack_from('>IIII',buf,index)
printmagic,numImages,numRows,numColumns
index+=struct.calcsize('>IIII')
ifmagic!=2051:
raiseException
datasize=int(784*datanum)
datablock=">"+str(datasize)+"B"
#nextmatrix=struct.unpack_from('>47040000B',buf,index)
nextmatrix=struct.unpack_from(datablock,buf,index)
nextmatrix=numpy.array(nextmatrix)/255.0
#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)
#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)
nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)
returnnextmatrix,numImages
defloadMNISTlabels(absFilePathandName,datanum=60000):
labels=open(absFilePathandName,'rb')
buf=labels.read()
index=0
magic,numLabels=struct.unpack_from('>II',buf,index)
printmagic,numLabels
index+=struct.calcsize('>II')
ifmagic!=2049:
raiseException
datablock=">"+str(datanum)+"B"
#nextmatrix=struct.unpack_from('>60000B',buf,index)
nextmatrix=struct.unpack_from(datablock,buf,index)
nextmatrix=numpy.array(nextmatrix)
returnnextmatrix,numLabels
defsimpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):
decayRate=0.01
MNISTimage,num1=loadMNISTimage("F:\train-images-idx3-ubyte",imageNum)
printnum1
row,col=numpy.shape(MNISTimage[0,0,:,:])
out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)
MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)
MLP.setTrainDataNum(imageNum)
MLP.loadtrainlabel("F:\train-labels-idx1-ubyte")
MLP.initialweights()
#MLP.printWeightMatrix()
rng=numpy.random.RandomState(23455)
W_shp=(numofFilter,filter_size,filter_size)
W_bound=numpy.sqrt(numofFilter*filter_size*filter_size)
W_k=rng.uniform(low=-1.0/W_bound,high=1.0/W_bound,size=W_shp)
B_shp=(numofFilter,)
B=numpy.asarray(rng.uniform(low=-.5,high=.5,size=B_shp))
cIter=0
whilecIter<maxIter:
cIter+=1
ImageNum=random.randint(0,imageNum-1)
conv_out_map=cnn_conv(MNISTimage[ImageNum,0,:,:],W_k,B,"sigmoid")
out_pooling,max_index_Matrix=cnn_maxpooling(conv_out_map,2,"max")
pool_shape=numpy.shape(out_pooling)
MLP_input=out_pooling.reshape(1,1,out_Di)
#printnumpy.shape(MLP_input)
DetaW,DetaB,temperror=MLP.backwardPropogation(MLP_input,ImageNum)
ifcIter%50==0:
printcIter,"Temperror:",temperror
#printnumpy.shape(MLP.Theta[MLP.Nl-2])
#printnumpy.shape(MLP.Ztemp[0])
#printnumpy.shape(MLP.weightMatrix[0])
theta_pool=MLP.Theta[MLP.Nl-2]*MLP.weightMatrix[0].transpose()
#printnumpy.shape(theta_pool)
#print"theta_pool",theta_pool
temp=numpy.zeros((1,1,out_Di))
temp[0,:,:]=theta_pool
back_theta_pool=temp.reshape(pool_shape)
#print"back_theta_pool",numpy.shape(back_theta_pool)
#print"back_theta_pool",back_theta_pool
error_conv=backErrorfromPoolToConv(back_theta_pool,max_index_Matrix,conv_out_map,2)
#print"error_conv",numpy.shape(error_conv)
#printerror_conv
conv_DetaW,conv_DetaB=backErrorfromConvToInput(error_conv,MNISTimage[ImageNum,0,:,:])
#print"W_k",W_k
#print"conv_DetaW",conv_DetaW
F. 怎样用python构建一个卷积神经网络
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
G. python神经网络编程有什么用
预测器
神经网络和计算机一样,对于输入和输出都做了一些处理,当我们不知道这些是什么具体处理的时候,可以使用模型来估计,模型中最重要的就是其中的参数。
对于以前所学的知识都是求出特定的参数,而在这里是使用误差值的大小去多次指导参数的调整,这就是迭代。
误差值=真实值-计算值
分类器
预测器是转换输入和输出之间的关系,分类器是将两类事物划分开,只是预测器的目的是找到输出在直线上,分类器是找到输出分为两类各在直线的上下方。但其实都是找到一个合适的斜率(只考虑简单情况下)
分类器中的误差值E=期望的正确值-基于A的猜测值得到的计算值$ E=t-y \quad E=(ΔA)x $这就是使用误差值E得到ΔA
ΔA=E/x
,再将ΔA作为调整分界线斜率A的量
但是这样会存在一个问题,那就是最终改进的直线会与最后一个训练样本十分匹配,近视可以认识忽略了之前的训练样本,所以要采用一个新的方法:采用ΔA几分之一的一个变化值,这样既能解决上面的问题,又可以有节制地抑制错误和噪声的影响,该方法如下
ΔA=L(E/x)
此处的L称之为调节系数(学习率)
使用学习率可以解决以上问题,但是当数据本身不是由单一线性过程支配时,简单的线性分类器还是不能实现分类,这个时候就要采用多个线性分类器来划分(这就是神经网络的核心思想)
神经网络中追踪信号
对于一个输入,神经元不会立即反应,而是会抑制输入,只有当输入增强到了一定程度,才可以触发输出,并且神经元前后层之间是互相连接的。
神经元的输入和输出一般采用S函数(sigmoid function)
y=11+e−x
。因为神经元存在多个输入,所以需要将输入的总和作为S函数的输出。要控制最后的输出结果,最有效的方式就是调整节点之间的连接强度,这就要使用到矩阵点乘。
一般神经网络分为三层,第一层是输入层,无需任何计算;第二层是隐藏层;最后是输出层。
总体过程如下:(特别注意:权重矩阵是不一样的)
1.输入层接收信号,通过权重比例输出到隐藏层,此处遵守公式
X=W•I
$$
\begin{pmatrix}
w_{1,1} & w_{2,1}\\
w_{1,2} & w_{2,2}
\end{pmatrix}
\begin{pmatrix}
input1\\
input2
\end{pmatrix}
$$其中W是权重矩阵,I是输入矩阵,X是组合调节后的信号
2.隐藏层使用S函数(激活函数)对输入进行处理,然后输出到输出层
3.按照同样的公式,先经过权重的组合调节再适用S函数(激活函数)得到最后的输出
反向传播误差
误差=期望的输出值-实际的计算值,所以根据误差来调整权重。误差一般使用不等分误差,就是按照权重的比例分割误差。
使用权重,将误差从输出向后传播到网络中,被称为反向传播。
H. Hopfield神经网络用python实现讲解
神经网络结构具有以下三个特点:
神经元之间全连接,并且为单层神经网络。
每个神经元既是输入又是输出,导致得到的权重矩阵相对称,故可节约计算量。
在输入的激励下,其输出会产生不断的状态变化,这个反馈过程会一直反复进行。假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。
Hopfield网络可以储存一组平衡点,使得当给定网络一组初始状态时,网络通过自行运行而最终收敛于这个设计的平衡点上。当然,根据热力学上,平衡状态分为stable state和metastable state, 这两种状态在网络的收敛过程中都是非常可能的。
为递归型网络,t时刻的状态与t-1时刻的输出状态有关。之后的神经元更新过程也采用的是异步更新法(Asynchronous)。
Hopfield神经网络用python实现
I. 从零开始用Python构建神经网络
从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)
2 层神经网络的结构
用 Python 可以很容易的构建神经网络类
训练神经网络
这个网络的输出 ? 为:
你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:
前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:
我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:
但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。
梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。
链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中
为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。
神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。
让我们看看经过 1500 次迭代后的神经网络的最终预测结果:
经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助