python数据拼接
❶ python常见数据类型
一,python整数类型所表示的数据。
1,一般用以表示一类数值:所有正整数,0和负整数;
2,整型作为最常用的,频繁参与计算的数据类型,在python3.5中解释器会自动在内存中创建-5-3000之间的(包含5,不包含3000)整型对象,也就是说在该范围内,相等都是同一个已经创建好的整型对象。范围之外的即使相等也表示不同对象,该特性随python版本而改变,不要过于依赖。
3,bool型继承了int型,他是int的子类。
4,Python2中有长整型long,数值范围更大,在python3中已取消,所有整型统一由int表示。
5,参与所有数值计算,数学运算,科学计算。这也是所有编程语言都有的数据类型,因为编程语言生而需要模拟人的思维,借助数学方式,自动计算、更好的解决大量重复性的事务,因此数值类型、整数类型在编程语言中不可或缺。
6,支持二进制(0b\0B开头),十进制,八进制(0o\0O),十六进制(0x\0X)
二,python整数和浮点型支持常规的数值运算
整数和浮点数都可参与的运算:+ - * / %(取余) //(整除) **(幂)
Python字符型:
python字符型表示的数据:
python3支持Unicode编码,由字母、数字和符号组成的形式就叫字符串,更接近或者相同与人们文字符号表示,因此在信息表示和传递时它也是最受认可的形式。在程序编写中也是非常常用,对应的可操作的方法也很多,很有意思。
字符串不可被修改,可以拼接等方法创建新字符串对象;
支持分片和下标操作;a[2:]
支持+拼接,*重复操作和成员关系in/not in;
表示形式:用单引号双引号包含起来的符号;a = str(‘sdfsdfsdf’) 或 r’\t\nabcd’ 原始字符,Bytes:b’abcd’;
6,字符串属于不可变数据类型,内部机制为了节省空间,相同的两个字符串表示相同的一个对象。a = ‘python’ b = ‘python’ a is b :True
二, 字符串支持的运算方法
1,capitalize() :首字母大写后边的字母小写 a = ‘abcd’ b = a.capitalize() b:Abcd
2,casefold() lower():字母转换为全小写
3,center(width,fillchar) :居中,width填补的长度;fillchar添加的字符
a = a.center(10,’_’) //’____abcd____’ 默认无fillchar填充空格
4,count(sub,star,end) :字母计数:sub要查询的字符
5,encode(encoding=’utf-8’,errors=’strict’) 设置编码
Errors :设置错误类型
6,endswith(suffix,star,end) : 若以suffix结尾返回True
7,expandtabs(8) :设置字符串中tab按键符的空格长度:’\tabcde’
8,find(sub,star,end) : 返回指定范围内的字符串下标,未找到返回-1
9,index(sub,star,end) :返回指定范围字符串下标未找到抛出异常
10,isalnum() :判断字符串是否是字母或数字,或字母和数字组合
11,isalpha() :判断是否全是字母
12,isdecimal() :判断字符串是否是十进制数值
13,isdigit() :判断字符串是否是数字
14,isidentifier() :判断字符串中是否包含关键字
15,islower() :判断是否全小写
16,isnumeric() :判断全是数字
17,isspace() :判断是否是空格
18,isupper() 判断是否大写
19,istitle() :判断是否首字母大写
20,join(iterable) :把可迭代对象用字符串进行分割:a.join(‘123’)
21,ljust(width,fillchar);rjust() :左对齐右对齐
22, upper() :将字符串改为大写
23,split(sep=None,maxsplit=-1) :分割一个字符串,被选中字符在字符串中删除
‘ab1cd1efg’.split(‘1’) :[‘ab’,’cd’,’efg’]
三,字符串格式化:按照规格输出字符串
format(*args,**kwargs) :args位置参数,kwargs关键字参数
‘{0:.1f}’.format(123.468) :格式化参数,小数点后保留1位四舍五入
四,字符串操作符%
1,%s :格式化字符串 ‘abcd%sdef’%’dddd’
2,%d:格式化整数
3,%o格式化无符号八进制
4,%x格式化无符号十六进制
5,%f格式化定点数
6, %e: 科学计数法格式化定点数
7,%g 根据值大小自动选%f,%e
8, %G E X :大写形式
五,格式化辅助命令:
m.n :m最小总宽度,n小数点后位数:’%12.4f’%23456.789
六,转义字符:字符串前r避免转义:r’\nhello\thi’
\n:换行符
\t:横向制表符
\':'
\":"
\b:退格符
\r:回车
\v:纵向制表符
\f:换页符
\o,\x:八进制和十六进制
\0:空字符串
Python列表list
一,Python的列表list类型表示的数据:
Python列表在cpython中被解释为长度可变的数组,用其他对象组成的连续数组。
列表中元素可以是相同或不同的数据类型;
当列表元素增加或删除时,列表对象自动进行扩展或收缩内存,保证元素之间没有缝隙,总是连续的。
Python中的列表是一个序列,也是一个容器类型
创建列表:a = []; b = [1,’python’]; c = list(); d = list((1,3,4,5))
支持切片操作list[start,stop,step]
python列表常用方法
1,append添加单个元素:list.append(object); //a.append(‘python’)
2,extend添加可迭代对象: list.extend(iterable); //a.extend(‘abcde’/[1,2,3])
3,insert 插入元素:list.insert(index,object): 在index下标前插入元素//a.insert(2,’python’)
4,clear 清空所有元素:list.clear() //a.clear()
5,pop 删除并返回一个元素:list.pop(index) //默认删除默认一个元素
remove 删除指定元素:list.remove(v) ,v元素不存在报错 //a.remove(‘c’)
7,count 返回这个值在列表中数量:list.count(value)
8, 浅拷贝一个新列表:list.()
9,sort:排序list.sort(reverse=False/True) :默认升序
排序函数:sorted(list)
10,reverse: 原地翻转:list.reverse()
11,index(value,star,stop) :指定范围内该值下标:list.index(2,0,5)
列表元素访问:
下标访问:list[1]
For循环遍历
通过下标修改元素:list[2 ] = ‘hello’
列表常用运算符:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新列表:l1+ l2
3, 重复操作符:* ,多个列表拼接
成员关系操作符:in/ not in
逻辑运算符:and not or
列表常用的排序方法:
冒泡排序;选择排序;快速排序;归并排序
Python元组tuple
一,Python元组tuple数据类型表示的数据:
元组是受到限制的、不可改变的列表;
可以是同构也可以是异构;
元组是序列类型、是可迭代对象,是容器类型。
元组的创建: a = (1,2,3)或a=1,2,3; b = tuple(); c = tuple(iterable)
支持切片操作tuple[start,stop,step]
二,python元组常用方法
1,index(value,star,stop) :指定范围内该值下标:tuple.index(2,0,5)
2,count(value) :值出现次数
三,支持运算:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新元组:l1+ l2
3, 重复操作符:* ,多个元组拼接
4成员关系操作符:in/ not in
逻辑运算符:and not or
四,元组的访问
下标操作;
For循环遍历访问。
Python字典类型
一,Python字典dict表示的数据:{key:value}
可根据关键字:键快速索引到对应的值;
字典是映射类型,键值对一一对应关系,不是序列;
字典元素是无序的;
字典是可迭代对象,是容器类型;
字典的创建:k = {}; k1={‘keyword’:object}; k2 = dict();
K3 = dict(mapping); dict=(iterable)
二,字典的访问:
通过key:k[‘key’]
修改key对应的值:K[‘key’] = value
For循环遍历出来的是key;
For循环键值对:for I in d.items():
For 循环enumerate: for k,v in enumerate(k1):
In/not in 成员关系查询键不支持查值
三,字典常用方法
get(key,de):获取值:k.get(key,de) //若不存在则默认输出de
pop(k,de):删除一个键值对,不存在输出de,未设置报错;
keys() :返回字典所有key组成的序列:list(k.keys()) [1,2,3];
values():返回字典所有value组成的序列:list(k.values())
items():返回键值对组成的元组为元素的序列:(类set)list(k.items())
update(e):更新字典:e可是字典或两元素组成的单位元素序列:e=[(5,6),(7,8)];
k.update(e)
clear():清空字典;
popitem()删除某个键值对,若字典为空则报错
() :浅拷贝
10, fromkeys(iterable,value=None):从可迭代对象创建字典
{}.fromkeys([1,2,3]) -----{1:None,2:None,3:None}
11,setdefault(k,d=None) :若key不存在则生成一个键值对
k.setdefault(‘keyword’)
Python 集合set
集合表示的数据:
多个元素的无序组合,集合是无序的,集合元素是唯一的;
字典的键是由集合实现的;
集合是可迭代对象
集合创建:s = {1,2}; s1 = set(); s2 = set(iterable)
集合元素的访问:
For 循环将集合所有元素全部访问一遍,不重复
常用方法:
add(object):s.add(‘hi’) 向集合添加一个元素
pop() :弹栈,集合为空则报错:删除任意一个元素;
clear():清空集合,返回一个空集合对象;
remove(object):删除一个元素,不存在和报错:s.remove(‘hi’)
update(集合):更新另一个集合,元素不存在则不更新;
() :浅拷贝
集合的运算:
交集:s1&s2;
差集,补集:s1-s2;
并集:s1|s2;
Issubset():判断是否是子集:s1.issubset(s2) s1是否s2的集合子集
Issuperset():判断是否是父集:s1.issuperset()
不可变集合:
Frozenset():返回一个空的不可变集合对象
Frozenset(iterable):
S = frozenset(iterable)
Python序列类型共同特性
一,序列类型共同特性
python序列类型有:str字符串,list列表,tuple元组
都支持下标索引,切片操作;
下标都是从0开始,都可通过下标进行访问;
拥有相同的操作符
二,支持的函数:
len(obj):返回对象长度;
list(iterable):将可迭代对象转为列表;
tuple(iterable):将可迭代对象转为元组;
str(ojb):将任何对象转为字符串形式;
max(iterable): python3中元素要是同类型,python2中元素可异构:max([‘a’,1])
min(iterable):和max类似;
sum(iterable,star=0),求可迭代对象和,默认star为0,元素不能为字符串
sorted(iterable,key=None,reverse=False)
s=[(‘a’,3),(‘b’,2),(‘c’,9)]
sorted(s,key=lambda s:s[1]) //按照数字排序
reversed(sequence):翻转序列,返回迭代器
enumerate(iterable):返回enumerate对象,其元素都是一个元组(下标,值)
zip(iter1,iter2): zip([1,2],[3,4]) ----[(1,3),(2,4)]
序列类型的切片操作:
Slice:
L[index]; 访问某个元素;
L[1:4]; 区间
L[star:stop:step]; 设置步长取区间元素
❷ python 数值转BCD,如何拼接二进制字符串
首先你可以自己写函数采用%2的方式来算.
但是python自带了方法 bin.
比如bin(12345)回返回字符串'0b11000000111001' 这个时候在把0b去掉即可.
bin(number).replace('0b','')
在 Python 语言环境下我们这样连接数据库。
In [1]: from mysql import connector
In [2]: cnx = connector.connect(host="172.16.192.100",port=3306,user="appuser",password="xxxxxx")
但是连接数据库的背后发生了什么呢?
答案
当我们通过驱动程序(mysql-connector-python,pymysql)连接 MySQL 服务端的时候,就是把连接参数传递给驱动程序,驱动程序再根据参数会发起到 MySQL 服务端的 TCP 连接。当 TCP 连接建立之后驱动程序与服务端之间会按特定的格式和次序交换数据包,数据包的格式和发送次序由MySQL 协议规定。MySQL 协议:https://dev.mysql.com/doc/internals/en/client-server-protocol.html整个连接的过程中 MySQL 服务端与驱动程序之间,按如下的次序发送了这些包。
MySQL 服务端向客户端发送一个握手包,包里记录了 MySQL-Server 的版本,默认的授权插件,密码盐值(auth-data)。
2. MySQL 客户端发出 ssl 连接请求包(如果有必要的话)。
3. MySQL 客户端发出握手包的响应包,这个包时记录了用户名,密码加密后的串,客户端属性,等等其它信息。
4. MySQL 服务端发出响应包,这个包里记录了登录是否成功,如果没有成功也会给出错误信息。
❹ 急!!用python连接数据库
settings.py
if DEBUG:
DATABASES = {
'default': {
'ENGINE': 'mysql', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'.
'NAME': '库名', # Or path to database file if using sqlite3.
'USER': 'root', # Not used with sqlite3.
'PASSWORD': '', # Not used with sqlite3.
'HOST': '', # Set to empty string for localhost. Not used with sqlite3.
'PORT': '3306', # Set to empty string for default. Not used with sqlite3.
},
'库名': {
'ENGINE': 'mysql', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'.
'NAME': '库名', # Or path to database file if using sqlite3.
'USER': 'root', # Not used with sqlite3.
'PASSWORD': '', # Not used with sqlite3.
'HOST': '', # Set to empty string for localhost. Not used with sqlite3.
'PORT': '3306', # Set to empty string for default. Not used with sqlite3.
}
}
❺ python数据分析怎么使用,都需要学习什么技术
Python是一种面向对象、直译式计算机程序设计语言,由Guido van Rossum于1989年底发明。由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。
Python数据分析,主要需要学习以下内容:
1、Python语法基础
2、Python数据分析扩展包:Numpy、Pandas、Matplotlib等
3、Python爬虫基础(非必须,但可以提升兴趣)
4、Python数据探索及预处理
5、Python机器学习
python的下载和安装环境:难点主要是在环境的安装上,很多小白往往一腔热血但是面对环境安装的时候就泄了气,因为我会用Anaconda为例进行环境的安装,同时我建议初学者不要下载具有IDE功能的集成开发环境,比如Eclipse插件等。
数据类型:python的数据类型比较简单,基本上就可以分为两大类——数值和字符串。
数值:数值是python最基础的数据类型,也是我们赋值给变量时最常用的形式,主要包括整型、布尔型等。
字符串:也就是文本数据,在python中一般用引号来定义,可以通过python进行拼接和重叠,实现文本数据的处理;
索引和切片:索引是有序列每个子元素在序列的位置,切片就是对序列的部分截取。
列表:用中括号表示,可以容纳任何对象元素,包括字符串,而且每个元素都可以变化;
元组:其实就是一个固定的列表,初始化元素的值是绝对不能变化的;
字典:可以理解为现实的字典,通过查找拼音(键)就能找到这个读音的所有字(数值);中
集合:数学上的概念,每个集合中的元素是无序的,不可重复的对象;
数据结构:python的数据结构可以分为四种,列表、元组、字典、集合。
数据分析的目的是从数据里找规律,因此想要掌握python必须要学习一些基础的数理理论,这是成为一个数据分析师必备的能力。对于python来说,其涉及的数理统计学基础主要由算法、统计学、概率论等
sql是python的基础,如果你已经掌握了SQL,那么这一章你就可以直接跳过,那么你就要好好学习这部分的内容,因为sql是入门python的关键基础,同时它也是每个数据分析师必备的技能,主要目的是用sql来进行增删改查等操作,对数据进行筛选。
以上的回答希望对你有所帮助
❻ 如何使用python连接数据库,插入并查询数据
你可以访问Python数据库接口及API查看详细的支持数据库列表。不同的数据库你需要下载不同的DB API模块,例如你需要访问Oracle数据库和Mysql数据,你需要下载Oracle和MySQL数据库模块。
DB-API 是一个规范. 它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和多种多样的数据库接口程序提供一致的访问接口 。
Python的DB-API,为大多数的数据库实现了接口,使用它连接各数据库后,就可以用相同的方式操作各数据库。
Python DB-API使用流程:
引入 API 模块。
获取与数据库的连接。
执行SQL语句和存储过程。
关闭数据库连接。
什么是MySQLdb?
MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的。
如何安装MySQLdb?
为了用DB-API编写MySQL脚本,必须确保已经安装了MySQL。复制以下代码,并执行:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
如果执行后的输出结果如下所示,意味着你没有安装 MySQLdb 模块:
Traceback (most recent call last):
File "test.py", line 3, in <mole>
import MySQLdb
ImportError: No mole named MySQLdb
安装MySQLdb,请访问 ,(Linux平台可以访问:)从这里可选择适合您的平台的安装包,分为预编译的二进制文件和源代码安装包。
如果您选择二进制文件发行版本的话,安装过程基本安装提示即可完成。如果从源代码进行安装的话,则需要切换到MySQLdb发行版本的顶级目录,并键入下列命令:
$ gunzip MySQL-python-1.2.2.tar.gz
$ tar -xvf MySQL-python-1.2.2.tar
$ cd MySQL-python-1.2.2
$ python setup.py build
$ python setup.py install
注意:请确保您有root权限来安装上述模块。
数据库连接
连接数据库前,请先确认以下事项:
您已经创建了数据库 TESTDB.
在TESTDB数据库中您已经创建了表 EMPLOYEE
EMPLOYEE表字段为 FIRST_NAME, LAST_NAME, AGE, SEX 和 INCOME。
连接数据库TESTDB使用的用户名为 "testuser" ,密码为 "test123",你可以可以自己设定或者直接使用root用户名及其密码,Mysql数据库用户授权请使用Grant命令。
在你的机子上已经安装了 Python MySQLdb 模块。
如果您对sql语句不熟悉,可以访问我们的 SQL基础教程
实例:
以下实例链接Mysql的TESTDB数据库:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# 使用execute方法执行SQL语句
cursor.execute("SELECT VERSION()")
# 使用 fetchone() 方法获取一条数据库。
data = cursor.fetchone()
print "Database version : %s " % data
# 关闭数据库连接
db.close()
执行以上脚本输出结果如下:
Database version : 5.0.45
创建数据库表
如果数据库连接存在我们可以使用execute()方法来为数据库创建表,如下所示创建表EMPLOYEE:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# 如果数据表已经存在使用 execute() 方法删除表。
cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")
# 创建数据表SQL语句
sql = """CREATE TABLE EMPLOYEE (
FIRST_NAME CHAR(20) NOT NULL,
LAST_NAME CHAR(20),
AGE INT,
SEX CHAR(1),
INCOME FLOAT )"""
cursor.execute(sql)
# 关闭数据库连接
db.close()
数据库插入操作
以下实例使用执行 SQL INSERT 语句向表 EMPLOYEE 插入记录:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# SQL 插入语句
sql = """INSERT INTO EMPLOYEE(FIRST_NAME,
LAST_NAME, AGE, SEX, INCOME)
VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try:
# 执行sql语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# Rollback in case there is any error
db.rollback()
# 关闭数据库连接
db.close()
以上例子也可以写成如下形式:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# SQL 插入语句
sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \
LAST_NAME, AGE, SEX, INCOME) \
VALUES ('%s', '%s', '%d', '%c', '%d' )" % \
('Mac', 'Mohan', 20, 'M', 2000)
try:
# 执行sql语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# 发生错误时回滚
db.rollback()
# 关闭数据库连接
db.close()
实例:
以下代码使用变量向SQL语句中传递参数:
..................................
user_id = "test123"
password = "password"
con.execute('insert into Login values("%s", "%s")' % \
(user_id, password))
..................................
数据库查询操作
Python查询Mysql使用 fetchone() 方法获取单条数据, 使用fetchall() 方法获取多条数据。
fetchone(): 该方法获取下一个查询结果集。结果集是一个对象
fetchall():接收全部的返回结果行.
rowcount: 这是一个只读属性,并返回执行execute()方法后影响的行数。
实例:
查询EMPLOYEE表中salary(工资)字段大于1000的所有数据:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# SQL 查询语句
sql = "SELECT * FROM EMPLOYEE \
WHERE INCOME > '%d'" % (1000)
try:
# 执行SQL语句
cursor.execute(sql)
# 获取所有记录列表
results = cursor.fetchall()
for row in results:
fname = row[0]
lname = row[1]
age = row[2]
sex = row[3]
income = row[4]
# 打印结果
print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \
(fname, lname, age, sex, income )
except:
print "Error: unable to fecth data"
# 关闭数据库连接
db.close()
以上脚本执行结果如下:
fname=Mac, lname=Mohan, age=20, sex=M, income=2000
数据库更新操作
更新操作用于更新数据表的的数据,以下实例将 TESTDB表中的 SEX 字段全部修改为 'M',AGE 字段递增1:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# SQL 更新语句
sql = "UPDATE EMPLOYEE SET AGE = AGE + 1
WHERE SEX = '%c'" % ('M')
try:
# 执行SQL语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# 发生错误时回滚
db.rollback()
# 关闭数据库连接
db.close()
删除操作
删除操作用于删除数据表中的数据,以下实例演示了删除数据表 EMPLOYEE 中 AGE 大于 20 的所有数据:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import MySQLdb
# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# SQL 删除语句
sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
# 执行SQL语句
cursor.execute(sql)
# 提交修改
db.commit()
except:
# 发生错误时回滚
db.rollback()
# 关闭连接
db.close()
执行事务
事务机制可以确保数据一致性。
事务应该具有4个属性:原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。
原子性(atomicity)。一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。
一致性(consistency)。事务必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。
隔离性(isolation)。一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。
持久性(rability)。持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。
Python DB API 2.0 的事务提供了两个方法 commit 或 rollback。
❼ python中有将两列数据合并为一列数据的函数么
有, 要用apply函数。一种方式:
def my_test(a, b):
return a + b
df['value'] = df.apply(lambda row: my_test(row['A'], row['B']), axis=1)
apply完了产生一列新的series。注意axis=1 不能漏了 ,表示apply的方向是纵向
❽ Python中拼接字符串和数字时报错如何处理
Python拼接字符串和数字时会报错, 代码如下
import osimport sys
str = 'Python学科的分数为:'score = 90print str + str(score) + '分'
执行结果:
Traceback (most recent call last):
File "C:/Users/Administrator/PycharmProjects/Python_Demo/filedemo.py", line 9, in <mole>
print str + str(score) + '分'
TypeError: 'str' object is not callable
❾ Python实现,输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接
你的例子第一列全是 3,我给个例子吧:[321, 32, 3, 4],输出该是 321,32,3,4。
第一个数越大,则应该排在后面,毕竟 4XXX 是比 3XXX 大的。
setp1:[0][1][2]
321
32
3
4
排序第0列,越大的排越后。
ret=[?,?,?,4]
setp2:[0][1][2]
321
32
3<3><-补位3,因为3是同3组第一个元素。
排序第1列,越大的排越后。
ret=[?,?,3,4]
setp3:[0][1][2]
321
32<3><-补位3,因为3是同3组第一个元素。
排序第2列,越大的排越后。323比321大,所以……
ret=[?,32,3,4]
只剩一个,那个排第一:
ret=[321,32,3,4]
以上就是基本思路了。综上可得:
1. 先按 [0] 列分组:
2. 组中每个数都补位到同样长度,然后再排序。
完整代码:
defjoinmin(ls):
groups={}
foriteminls:
prefix=item
n=0
whileprefix>10:
prefix//=10
n+=1
groups.setdefault(prefix,[]).append([item,n])
sorted_keys=list(sorted(groups))
ret=0
forprefixinsorted_keys:
items=groups[prefix]
max_n=max([t[1]fortinitems])
presort_items=[]
foritem,item_ninitems:
padding=item
n=item_n
whilemax_n>n:
padding*=10
padding+=prefix
n+=1
presort_items.append((padding,item,item_n))
for_,item,ninsorted(presort_items):
whilen>-1:
ret*=10
n-=1
ret+=item
returnret
不是看在你的分上答的,不过这种小题目蛮有趣的。