python爬虫贴吧
1. 如何用python做爬虫
在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材。
我们最常规的做法就是通过鼠标右键,选择另存为。但有些图片鼠标右键的时候并没有另存为选项,还有办法就通过就是通过截图工具截取下来,但这样就降低图片的清晰度。好吧其实你很厉害的,右键查看页面源代码。
我们可以通过python来实现这样一个简单的爬虫功能,把我们想要的代码爬取到本地。下面就看看如何使用python来实现这样一个功能。
2. IDLE+Shell+3.9.7怎样爬虫
这是一个适用于小白的Python爬虫免费教学分享,只有7节,让零基础的你初步了解爬虫,跟着课程内容能自己爬取资源。看着文章,打开电脑动手实践,平均45分钟就能学完一节,如果你愿意,今天内你就可以迈入爬虫的大门啦~
话不多说,正式开始我们的第一节课《Python环境的安装》吧~
啦啦啦开课啦,看黑板,都看黑板~
1. 安装Anaconda
在我们的教学中,我们使用的版本是Python3,至于为什么要选Python3,哼哼!
工欲善其事,必先利其器,在学习爬虫之前,你得先搭建自己的编程环境。废话不多说,按照下面的方法搭建吧:
1.1 下载Anaconda
打开Anaconda网页后,看到这样的页面:
根据你的电脑系统,选择相应版本的 Anaconda(记住选择 Python 3.6 的版本),Mac OS 用户选择 Mac 版本即可,如果不想麻烦,请选择 Graphical Installer。
1.2 安装 Anaconda
选择默认位置安装即可:
两个选择框都勾上,安装:
1.3 在开始菜单中查看 Anaconda
Anaconda 装好之后,可以在开始菜单查看。可以看到包含了如下图所示的组件:
之后我们会用到的主要是:
Anaconda Prompt:Anaconda 自带的命令行
Jupyter Notebook:一个简单易用、适合入门的 IDE
2. 安装常用包
2.1 安装 Python 包 requests
打开 cmd 终端,输入 pip install requests,若安装不成功,可以尝试:conda install requests
出现 Successfully installed,即表示成功安装。若需检测,先输入 Python,再输入 import requests,未出现报错,表示安装成功,可以正常使用。注:操作完记得退出:quit()。
如果安装时显示 conda 不是内部或外部命令,用下面的方式安装(如未报错则不必用下面的方法)
在开始菜单打开 Anaconda Prompt:
在 Anaconda Prompt 输入 conda install requests:
前往 http://www.lfd.uci.e/~gohlke/pythonlibs/,手动下载需要安装的第三方包(注意对应你的python版本是32位还是64位)。
在下载下来的文件所在目录按住shift并点击鼠标右键,选择在此处打开Powershell窗口,在此命令行中使用 pip install + 下载下来文件全名 ,即可完成安装。
2.2 安装 Python 包 lxml
同样在终端输入: conda install lxml,出现 Successfully installed,即表示成功安装,若不能成功安装,请尝试如下方法。
所以你该知道如何安装 Python 包了吧,通用方法是,在终端输入:conda install + 包名称 或者 pip install + 包名称。出现特殊的不能安装的情况,可以去下载之后进行安装。
3. Jupyter Notebook
3.1 开启Jupyter Notebook
在开始菜单打开 Jupyter Notebook:
Jupyter 将会在网页中自动打开:
3.2 Jupyter Notebook 界面
Files:你当前工作环境下的所有项目(代码)、默认存储的文件都在这里:
Runing:你目前正在运行的项目都在这里:
3.3 新建一个文档,开始写代码
依次点击右上方 :New > Python 3,即新建了一个 Ipython 文件,如图:
点击上方 Utitled 可以更改文档的名称,下面的空间就可以写代码啦:
3.4 Jupyter Notebook 功能简介
4. 创建第一个实例:爬取网络首页
仅用四行代码,我们就可以把网络首页的内容下载下来:
1.导入 requests 库;2.下载网络首页内容;3.更改编码;4.打印内容
具体爬虫原理及代码的内涵,在下一节的案例中详细讲解~
好了,这节课就到这里
3. 如何用Python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
4. python3爬虫爬百度贴吧decode("utf-8")出错
我写了下代码。没有编码问题,是不是不用decode?
import requests
r1 = requests.get("http://tieba..com/f?ie=utf-8&kw=python&fr=search")
print(r1.text)
5. 如何入门 Python 爬虫
“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。
如果你想要入门Python爬虫,你需要做很多准备。首先是熟悉python编程;其次是了解HTML;
还要了解网络爬虫的基本原理;最后是学习使用python爬虫库。
如果你不懂python,那么需要先学习python这门非常easy的语言。编程语言基础语法无非是数据类型、数据结构、运算符、逻辑结构、函数、文件IO、错误处理这些,学起来会显枯燥但并不难。
刚开始入门爬虫,你甚至不需要去学习python的类、多线程、模块之类的略难内容。找一个面向初学者的教材或者网络教程,花个十几天功夫,就能对python基础有个三四分的认识了。
网络爬虫的含义:
网络爬虫,其实也可以叫做网络数据采集更容易理解。就是通过编程向网络服务器请求数据(HTML表单),然后解析HTML,提取出自己想要的数据。
这会涉及到数据库、网络服务器、HTTP协议、HTML、数据科学、网络安全、图像处理等非常多的内容。但对于初学者而言,并不需要掌握这么多。
6. python爬虫如何分析一个将要爬取的网站
首先,你去爬取一个网站,
你会清楚这个网站是属于什么类型的网站(新闻,论坛,贴吧等等)。
你会清楚你需要哪部分的数据。
你需要去想需要的数据你将如何编写表达式去解析。
你会碰到各种反爬措施,无非就是各种网络各种解决。当爬取成本高于数据成本,你会选择放弃。
你会利用你所学各种语言去解决你将要碰到的问题,利用各种语言的client组件去请求你想要爬取的URL,获取到HTML,利用正则,XPATH去解析你想要的数据,然后利用sql存储各类数据库。
7. python爬虫编码错误 UnicodeEncodeError: 'gbk' codec can't encode character '\xae' in position
搞定
8. python3 爬取图片异常的原因
我们在下载文件时,一会会采取urlretrieve或是requests的get方式,
from urllib.request import urlretrieve
urlretrieve(self.url, filename="xxx.png")
但对于连续下载,各个文件保存是需要时间的,而程序运行永运是快于存储的,我怀疑这是水管里流水速度与缸的大小不合适的原因,那可以试试下面这种方式:
r = requests.get(url, stream=True)
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
f.flush()
9. python新手求助 关于爬虫的简单例子
#coding=utf-8
from bs4 import BeautifulSoup
with open('index.html', 'r') as file:
fcontent = file.read()
sp = BeautifulSoup(fcontent, 'html.parser')
t = 'new_text_for_replacement'
# replace the paragraph using `replace_with` method
sp.find(itemprop='someprop').replace_with(t)
# open another file for writing
with open('output.html', 'w') as fp:
# write the current soup content
fp.write(sp.prettify())
如果要替换段落的内容而不是段落元素本身,可以设置.string属性。
sp.find(itemprop='someprop').string = t
赞0收藏0评论0分享
用户回答回答于 2018-07-26
问题取决于你搜索标准的方式,尝试更改以下代码:
print(sp.replace(sp.find(itemprop="someprop").text,t))
对此:
print(sp.replace(sp.find({"itemprop":"someprop"}).text,t))
# coding:utf-8
from bs4 import BeautifulSoup
import requests
import os
url = 'https://'
r = requests.get(url)
demo = r.text # 服务器返回响应
soup = BeautifulSoup(demo, "html.parser")
"""
demo 表示被解析的html格式的内容
html.parser表示解析用的解析器
"""
# 输出响应的html对象
ab = list()
with open("D:\\temp\\mii.txt","w+",encoding="utf-8") as xxx:
for mi in soup.find_all('a'):
ab.append(mi.prettify()) # 使用prettify()格式化显示输出
# xxx.writelines(str(mi))
xxx.writelines(ab)
xxx.close()
10. 如何用python写爬虫 知乎
学习
基本的爬虫工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom Filters by Example
如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https://github.com/nvie/rq
rq和Scrapy的结合:darkrho/scrapy-redis · GitHub
后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)