矩阵索引python
A. python解决矩阵问题
下面是基于python3.4的数组矩阵输入方法:
1.import numpy as np
2.arr = [1,2,3,4,5,6,7,8,9]
3.matrix_a = np.array(arr)2.
4.手动定义一个空数组:arr =[],链表数组:a = [1,2,[1,2,3]]。
Python, 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
Python是纯粹的自由软件,源代码和解释器CPython遵循GPL(GNUGeneral Public License)协议[2]。Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中[3]有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
7月20日,IEEE发布2017年编程语言排行榜:Python高居首位。
B. python中稀疏矩阵的怎么用numpy处理
NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作。
下面对numpy中的操作进行总结。
numpy包含两种基本的数据类型:数组和矩阵。
数组(Arrays)
>>> from numpy import *>>> a1=array([1,1,1]) #定义一个数组>>> a2=array([2,2,2])>>> a1+a2 #对于元素相加array([3, 3, 3])>>> a1*2 #乘一个数array([2, 2, 2])##>>> a1=array([1,2,3])>>> a1
array([1, 2, 3])>>> a1**3 #表示对数组中的每个数做平方array([ 1, 8, 27])##取值,注意的是它是以0为开始坐标,不matlab不同>>> a1[1]2##定义多维数组>>> a3=array([[1,2,3],[4,5,6]])>>> a3
array([[1, 2, 3],
[4, 5, 6]])>>> a3[0] #取出第一行的数据array([1, 2, 3])>>> a3[0,0] #第一行第一个数据1>>> a3[0][0] #也可用这种方式1##数组点乘,相当于matlab点乘操作>>> a1=array([1,2,3])>>> a2=array([4,5,6])>>> a1*a2
array([ 4, 10, 18])
Numpy有许多的创建数组的函数:
import numpy as np
a = np.zeros((2,2)) # Create an array of all zerosprint a # Prints "[[ 0. 0.]
# [ 0. 0.]]"b = np.ones((1,2)) # Create an array of all onesprint b # Prints "[[ 1. 1.]]"c = np.full((2,2), 7) # Create a constant arrayprint c # Prints "[[ 7. 7.]
# [ 7. 7.]]"d = np.eye(2) # Create a 2x2 identity matrixprint d # Prints "[[ 1. 0.]
# [ 0. 1.]]"e = np.random.random((2,2)) # Create an array filled with random valuesprint e # Might print "[[ 0.91940167 0.08143941]
# [ 0.68744134 0.87236687]]"
数组索引(Array indexing)
矩阵
矩阵的操作与Matlab语言有很多的相关性。
#创建矩阵
>>> m=mat([1,2,3])
>>> m
matrix([[1, 2, 3]])
#取值
>>> m[0] #取一行
matrix([[1, 2, 3]])
>>> m[0,1] #第一行,第2个数据2>>> m[0][1] #注意不能像数组那样取值了
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
File "/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py", line 305, in __getitem__
out = N.ndarray.__getitem__(self, index)
IndexError: index 1 is out of bounds for axis 0 with size 1#将Python的列表转换成NumPy的矩阵
>>> list=[1,2,3]
>>> mat(list)
matrix([[1, 2, 3]])
#矩阵相乘
>>> m1=mat([1,2,3]) #1行3列
>>> m2=mat([4,5,6])
>>> m1*m2.T #注意左列与右行相等 m2.T为转置操作
matrix([[32]])
>>> multiply(m1,m2) #执行点乘操作,要使用函数,特别注意
matrix([[ 4, 10, 18]])
#排序
>>> m=mat([[2,5,1],[4,6,2]]) #创建2行3列矩阵
>>> m
matrix([[2, 5, 1],
[4, 6, 2]])
>>> m.sort() #对每一行进行排序
>>> m
matrix([[1, 2, 5],
[2, 4, 6]])
>>> m.shape #获得矩阵的行列数
(2, 3)
>>> m.shape[0] #获得矩阵的行数2>>> m.shape[1] #获得矩阵的列数3#索引取值
>>> m[1,:] #取得第一行的所有元素
matrix([[2, 4, 6]])
>>> m[1,0:1] #第一行第0个元素,注意左闭右开
matrix([[2]])
>>> m[1,0:3]
matrix([[2, 4, 6]])
>>> m[1,0:2]
matrix([[2, 4]])35363738394
扩展矩阵函数tile()
例如,要计算[0,0,0]到一个多维矩阵中每个点的距离,则要将[0,0,0]进行扩展。
tile(inX, (i,j)) ;i是扩展个数,j是扩展长度
实例如下:
>>>x=mat([0,0,0])
>>> x
matrix([[0, 0, 0]])
>>> tile(x,(3,1)) #即将x扩展3个,j=1,表示其列数不变
matrix([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> tile(x,(2,2)) #x扩展2次,j=2,横向扩展
matrix([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])1234567891011121314
C. Python的pandas 数组如何得到索引值,如图,我要得到ohio 的索引值,应该怎样做
直接上实例:
df = pd.DataFrame(np.random.randn(5,3),index = list('abcde'),columns = ['one','two','three']) #创建一个数据框
df 内容
第一个arrary代表第几行,第二个代表第几列。
如,如何条件的元素存在在:第一行第三列,第三行第一列,....
D. python矩阵
这有函数。你可以调用。
E. python如何输入矩阵
使用numpy创建矩阵有2种方法,一种是使用numpy库的matrix直接创建,另一种则是使用array来创建。
首先导入numpy:
(1)import numpy
(2)from numpy import *
(3)import numpy as np
相关推荐:《Python基础教程》
然后分别用上面说的2种方法来分别构建一个4×3的矩阵,如图:
F. python mumpy.ndarray矩阵能取某个值的索引吗
概念理解
索引即通过一个无符号整数值获取数组里的值。 切片即对数组里某个片段的描述。
G. python循环更新矩阵增加新的列
教你一个很厉害的方式。A,B都是列表数据结构。
比如想选取B的第i行,是这样的 B[i]
那么我们要选择的是哪些行呢?A[0],A[1]...A[5] 是这几行
于是B[A[0]]...,这样得到的是一个个单独的列表,你还要组成新的列表,你只要在外面加个括号就行
[ B[A[0]],B[A[1]],。。。 ]
进阶:一句话搞定
[B[item] for item in A[:5]]
H. python的矩阵可以做什么
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。
计算矩阵对应行列的最大、最小值、和。
3>>>a1=mat([[1,1],[2,3],[4,2]])
>>> a1
matrix([[1, 1],
[2, 3],
[4, 2]])
计算每一列、行的和
>>>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵
>>> a2
matrix([[7, 6]])
>>>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵
>>> a3
matrix([[2],
[5],
[6]])
>>>a4=sum(a1[1,:]) #计算第一行所有列的和,这里得到的是一个数值
>>> a4
5 #第0行:1+1;第2行:2+3;第3行:4+2
计算最大、最小值和索引
>>>a1.max() #计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
4
>>>a2=max(a1[:,1]) #计算第二列的最大值,这里得到的是一个1*1的矩阵
>>> a2
matrix([[3]])
>>>a1[1,:].max() #计算第二行的最大值,这里得到的是一个一个数值
3
>>>np.max(a1,0) #计算所有列的最大值,这里使用的是numpy中的max函数
matrix([[4, 3]])
>>>np.max(a1,1) #计算所有行的最大值,这里得到是一个矩阵
matrix([[1],
[3],
[4]])
>>>np.argmax(a1,0) #计算所有列的最大值对应在该列中的索引
matrix([[2, 1]])
>>>np.argmax(a1[1,:]) #计算第二行中最大值对应在该行的索引
1
I. python,请问我有10*20的矩阵,我想每行返回行中最大的3个数的索引值怎么做。原理我懂,求代码
安装numpy,利用numpy数组: >>> import numpy >>> array1 = numpy.array([[1, 2], [3, 4]]) >>> array1 array([[1, 2], [3, 4]]) >>> array1 * 2.5 array([[ 2.5, 5. ], [ 7.5, 10. ]]) 如果你用的是python的列表,它的乘法是列表的自我复制
J. 用python的numpy创建一个矩阵
使用numpy创建矩阵有2种方法,一种是使用numpy库的matrix直接创建,另一种则是使用array来创建。首先加载numpy库,然后分别用上面说的2种方法来分别构建一个4×3的矩阵,如图
[1]在高等数学或者线性代数等已经学过了当后面的矩阵的行数等于前面矩阵的列数时,2个矩阵才可以相乘
[2]Hadamard指的是2个m×n的矩阵相乘,结果仍然是m×n的矩阵,结果为对应元素的乘积
[3]单位矩阵是特殊的对角矩阵,零(1)矩阵是指元素全部是0(1)的矩阵
[4]矩阵的第一行是从0开始编号的,python中的各种编号基本上都是从0开始的
注意事项