当前位置:首页 » 编程语言 » java位

java位

发布时间: 2022-01-18 01:26:21

‘壹’ java中四个二进制位从操作符即(&按位与、|按位货、^按位异或、~按位取反)

首先回答你问的问题:
按位与运算符(&)
参加运算的两个数据,按二进制位进行“与”运算。

运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1;

即:两位同时为“1”,结果才为“1”,否则为0

例如:3&5 即 0000 0011 & 0000 0101 = 0000 0001 因此,3&5的值得1。

另,负数按补码形式参加按位与运算。

“与运算”的特殊用途:

(1)清零。如果想将一个单元清零,即使其全部二进制位为0,只要与一个各位都为零的数值相与,结果为零。

(2)取一个数中指定位

方法:找一个数,对应X要取的位,该数的对应位为1,其余位为零,此数与X进行“与运算”可以得到X中的指定位。

例:设X=10101110,

取X的低4位,用 X & 0000 1111 = 0000 1110 即可得到;

还可用来取X的2、4、6位。

按位或运算符(|)
参加运算的两个对象,按二进制位进行“或”运算。

运算规则:0|0=0; 0|1=1; 1|0=1; 1|1=1;

即 :参加运算的两个对象只要有一个为1,其值为1。

例如:3|5 即 0000 0011 | 0000 0101 = 0000 0111 因此,3|5的值得7。

另,负数按补码形式参加按位或运算。

“或运算”特殊作用:

(1)常用来对一个数据的某些位置1。

方法:找到一个数,对应X要置1的位,该数的对应位为1,其余位为零。此数与X相或可使X中的某些位置1。

例:将X=10100000的低4位置1 ,用 X | 0000 1111 = 1010 1111即可得到。

异或运算符(^)
参加运算的两个数据,按二进制位进行“异或”运算。

运算规则:0^0=0; 0^1=1; 1^0=1; 1^1=0;

即:参加运算的两个对象,如果两个相应位为“异”(值不同),则该位结果为1,否则为0。

“异或运算”的特殊作用:

(1)使特定位翻转找一个数,对应X要翻转的各位,该数的对应位为1,其余位为零,此数与X对应位异或即可。

例:X=10101110,使X低4位翻转,用X ^ 0000 1111 = 1010 0001即可得到。

(2)与0相异或,保留原值 ,X ^ 0000 0000 = 1010 1110。

从上面的例题可以清楚的看到这一点。

取反运算符(~)
参加运算的一个数据,按二进制位进行“取反”运算。

运算规则:~1=0; ~0=1;

即:对一个二进制数按位取反,即将0变1,1变0。

使一个数的最低位为零,可以表示为:a&~1。

~1的值为1111111111111110,再按“与”运算,最低位一定为0。因为“~”运算符的优先级比算术运算符、关系运算符、逻辑运算符和其他运算符都高。

然后在附送你两个为运算符的解释:
左移运算符(<<)
将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。

例:a = a << 2 将a的二进制位左移2位,右补0,

左移1位后a = a * 2;
若左移时舍弃的高位不包含1,则每左移一位,相当于该数乘以2。

右移运算符(>>)
将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。

操作数每右移一位,相当于该数除以2。

例如:a = a >> 2 将a的二进制位右移2位,

左补0 or 补1 得看被移数是正还是负。

如果还有什么疑问,可以参考一下参考资料

希望我的回答对您有帮助,别忘了采纳答案哦~

‘贰’ java中的位运算符及其用法。

位逻辑运算符有“与”(AND)、“或”(OR)、“异或(XOR)”、“非(NOT)”,分别用“&”、“|”、“^”、“~”表示。

下面的例子说明了位逻辑运算符:

// Demonstrate the bitwise logical operators.

class BitLogic {

public static void main(String args[]) {

String binary[] = {

"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",

"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"

};

int a = 3; // 0 + 2 + 1 or 0011 in binary

int b = 6; // 4 + 2 + 0 or 0110 in binary

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b) | (a & ~b);

int g = ~a & 0x0f;

System.out.println(" a = " + binary[a]);

System.out.println(" b = " + binary[b]);

System.out.println(" a|b = " + binary[c]);

System.out.println(" a&b = " + binary[d]);

System.out.println(" a^b = " + binary[e]);

System.out.println("~a&b|a&~b = " + binary[f]);

System.out.println(" ~a = " + binary[g]);

}

}

在本例中,变量a与b对应位的组合代表了二进制数所有的 4 种组合模式:0-0,0-1,1-0,和1-1。“|”运算符和“&”运算符分别对变量a与b各个对应位的运算得到了变量c和变量d的值。对变量e和f的赋值说明了“^”运算符的功能。字符串数组binary代表了0到15对应的二进制的值。在本例中,数组各元素的排列顺序显示了变量对应值的二进制代码。数组之所以这样构造是因为变量的值n对应的二进制代码可以被正确的存储在数组对应元素binary[n]中。例如变量a的值为3,则它的二进制代码对应地存储在数组元素binary[3]中。~a的值与数字0x0f (对应二进制为0000 1111)进行按位与运算的目的是减小~a的值,保证变量g的结果小于16。因此该程序的运行结果可以用数组binary对应的元素来表示。该程序的输出如下:

a = 0011

b = 0110

a|b = 0111

a&b = 0010

a^b = 0101

~a&b|a&~b = 0101

~a = 1100

左移运算符

左移运算符<<使指定值的所有位都左移规定的次数。它的通用格式如下所示:

value << num

这里,num指定要移位值value移动的位数。也就是,左移运算符<<使指定值的所有位都左移num位。每左移一个位,高阶位都被移出(并且丢弃),并用0填充右边。这意味着当左移的运算数是int类型时,每移动1位它的第31位就要被移出并且丢弃;当左移的运算数是long类型时,每移动1位它的第63位就要被移出并且丢弃。

在对byte和short类型的值进行移位运算时,你必须小心。因为你知道Java在对表达式求值时,将自动把这些类型扩大为 int型,而且,表达式的值也是int型 。对byte和short类型的值进行移位运算的结果是int型,而且如果左移不超过31位,原来对应各位的值也不会丢弃。但是,如果你对一个负的byte或者short类型的值进行移位运算,它被扩大为int型后,它的符号也被扩展。这样,整数值结果的高位就会被1填充。因此,为了得到正确的结果,你就要舍弃得到结果的高位。这样做的最简单办法是将结果转换为byte型。下面的程序说明了这一点:

// Left shifting a byte value.

class ByteShift {

public static void main(String args[]) {

byte a = 64, b;

int i;

i = a << 2;

b = (byte) (a << 2);

System.out.println("Original value of a: " + a);

System.out.println("i and b: " + i + " " + b);

}

}

该程序产生的输出下所示:

Original value of a: 64

i and b: 256 0

因变量a在赋值表达式中,故被扩大为int型,64(0100 0000)被左移两次生成值256(10000 0000)被赋给变量i。然而,经过左移后,变量b中惟一的1被移出,低位全部成了0,因此b的值也变成了0。

既然每次左移都可以使原来的操作数翻倍,程序员们经常使用这个办法来进行快速的2的乘法。但是你要小心,如果你将1移进高阶位(31或63位),那么该值将变为负值。下面的程序说明了这一点:

// Left shifting as a quick way to multiply by 2.

class MultByTwo {

public static void main(String args[]) {

int i;

int num = 0xFFFFFFE;

for(i=0; i<4; i++) {

num = num << 1;

System.out.println(num);

}

}

}

该程序的输出如下所示:

536870908

1073741816

2147483632

-32

初值经过仔细选择,以便在左移 4 位后,它会产生-32。正如你看到的,当1被移进31位时,数字被解释为负值。

右移运算符

右移运算符>>使指定值的所有位都右移规定的次数。它的通用格式如下所示:

value >> num

这里,num指定要移位值value移动的位数。也就是,右移运算符>>使指定值的所有位都右移num位。

下面的程序片段将值32右移2次,将结果8赋给变量a:

int a = 32;

a = a >> 2; // a now contains 8

当值中的某些位被“移出”时,这些位的值将丢弃。例如,下面的程序片段将35右移2次,它的2个低位被移出丢弃,也将结果8赋给变量a:

int a = 35;

a = a >> 2; // a still contains 8

用二进制表示该过程可以更清楚地看到程序的运行过程:

00100011 35

>> 2

00001000 8

将值每右移一次,就相当于将该值除以2并且舍弃了余数。你可以利用这个特点将一个整数进行快速的2的除法。当然,你一定要确保你不会将该数原有的任何一位移出。

右移时,被移走的最高位(最左边的位)由原来最高位的数字补充。例如,如果要移走的值为负数,每一次右移都在左边补1,如果要移走的值为正数,每一次右移都在左边补0,这叫做符号位扩展(保留符号位)(sign extension),在进行右移操作时用来保持负数的符号。例如,–8 >> 1 是–4,用二进制表示如下:

11111000 –8

>>1

11111100 –4

一个要注意的有趣问题是,由于符号位扩展(保留符号位)每次都会在高位补1,因此-1右移的结果总是–1。有时你不希望在右移时保留符号。例如,下面的例子将一个byte型的值转换为用十六进制表示。注意右移后的值与0x0f进行按位与运算,这样可以舍弃任何的符号位扩展,以便得到的值可以作为定义数组的下标,从而得到对应数组元素代表的十六进制字符。

// Masking sign extension.

class HexByte {

static public void main(String args[]) {

char hex[] = {

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'a', 'b', 'c', 'd', 'e', 'f''

};

byte b = (byte) 0xf1;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

}

}

该程序的输出如下:

b = 0xf1

无符号右移

正如上面刚刚看到的,每一次右移,>>运算符总是自动地用它的先前最高位的内容补它的最高位。这样做保留了原值的符号。但有时这并不是我们想要的。例如,如果你进行移位操作的运算数不是数字值,你就不希望进行符号位扩展(保留符号位)。当你处理像素值或图形时,这种情况是相当普遍的。在这种情况下,不管运算数的初值是什么,你希望移位后总是在高位(最左边)补0。这就是人们所说的无符号移动(unsigned shift)。这时你可以使用Java的无符号右移运算符>>>,它总是在左边补0。下面的程序段说明了无符号右移运算符>>>。在本例中,变量a被赋值为-1,用二进制表示就是32位全是1。这个值然后被无符号右移24位,当然它忽略了符号位扩展,在它的左边总是补0。这样得到的值255被赋给变量a。

int a = -1;

a = a >>> 24;

下面用二进制形式进一步说明该操作:

11111111 11111111 11111111 11111111 int型- 1的二进制代码

>>> 24 无符号右移24位

00000000 00000000 00000000 11111111 int型255的二进制代码由于无符号右移运算符>>>只是对32位和64位的值有意义,所以它并不像你想象的那样有用。因为你要记住,在表达式中过小的值总是被自动扩大为int型。这意味着符号位扩展和移动总是发生在32位而不是8位或16位。这样,对第7位以0开始的byte型的值进行无符号移动是不可能的,因为在实际移动运算时,是对扩大后的32位值进行操作。下面的例子说明了这一点:

// Unsigned shifting a byte value.

class ByteUShift {

static public void main(String args[]) {

char hex[] = {

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

};

byte b = (byte) 0xf1;

byte c = (byte) (b >> 4);

byte d = (byte) (b >>> 4);

byte e = (byte) ((b & 0xff) >> 4);

System.out.println(" b = 0x"

+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

System.out.println(" b >> 4 = 0x"

+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);

System.out.println(" b >>> 4 = 0x"

+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

System.out.println("( b & 0xff) >> 4 = 0x"

+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

}

}

该程序的输出显示了无符号右移运算符>>>对byte型值处理时,实际上不是对byte型值直接操作,而是将其扩大到int型后再处理。在本例中变量b被赋为任意的负byte型值。对变量b右移4位后转换为byte型,将得到的值赋给变量c,因为有符号位扩展,所以该值为0xff。对变量b进行无符号右移4位操作后转换为byte型,将得到的值赋给变量d,你可能期望该值是0x0f,但实际上它是0xff,因为在移动之前变量b就被扩展为int型,已经有符号扩展位。最后一个表达式将变量b的值通过按位与运算将其变为8位,然后右移4位,然后将得到的值赋给变量e,这次得到了预想的结果0x0f。由于对变量d(它的值已经是0xff)进行按位与运算后的符号位的状态已经明了,所以注意,对变量d再没有进行无符号右移运算。

B = 0xf1

b >> 4 = 0xff

b >>> 4 = 0xff

(b & 0xff) >> 4 = 0x0f

位运算符赋值

所有的二进制位运算符都有一种将赋值与位运算组合在一起的简写形式。例如,下面两个语句都是将变量a右移4位后赋给a:

a = a >> 4;

a >>= 4;

同样,下面两个语句都是将表达式a OR b运算后的结果赋给a:

a = a | b;

a |= b;

下面的程序定义了几个int型变量,然后运用位赋值简写的形式将运算后的值赋给相应的变量:

class OpBitEquals {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c = 3;

a |= 4;

b >>= 1;

c <<= 1;

a ^= c;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

}

}

该程序的输出如下所示:

a = 3

b = 1

c = 6

‘叁’ JAVA语言中,位运算符使用中,数的“位”是什么

与运算 法则 0&0=0;0&1=0;1&0=0;1&1=1 位就是十进制里面的个十百千 万,其它的进制也一样。129&128先转换成2进制再依次从低位算到高位,结果又转换成十进制。就是128,那个答案很详细了,你首先得了解几种所熟悉的位运算。
就是 与 或 非 。。。当然这属于逻辑运算,还有好多与或,异或,你可以网络看一下。。。

‘肆’ java中的按位运算符


0&&0 =0
1&&0 =0
0&&1 =0
1&&1 =1

0||0 =0
1||0 =1
0||1 =1
1||1 =1
异或是
1^0=1
0^1=1
0^0=0
1^1=0

例子
11001010 与
00011011
按位与 按位或 按位异或
00001010 11011011 11010001

‘伍’ 关于JAVA的位运算

~是取反运算

首先,你要知道java中的int是32位的
其次,正数以原码的形式存储,负数以补码的形式存储
4的二进制是0000 0000 0000 0000 0000 0000 0000 0100

取反后得1111 1111 1111 1111 1111 1111 1111 1011

java中都是有符号数,首位是1,所以是负数,负数也就是补码,也就是说
1111 1111 1111 1111 1111 1111 1111 1011是补码
补码,反码加1后得源码
转换成源码得0000 0000 0000 0000 0000 0000 0000 0101
这个数是5,加上符号就是-5

‘陆’ java中如何实现一个三位数的个位,十位,百位数分别表示出来

java中两种不同的分离十位、个位的方式
//获取最高位(百位)
b = a / 100;
获取十位c=(a%100)/10; 或者c = (a / 10) % 10;
获取个位d=a%10; 或者 d = a % 100 % 10;

‘柒’ java 按位运算

你的这个设计有问题。

位运算来进行逻辑判断,其实就是用数字的二进制各位来做标志。通过位运算,进行权限的组合和拆分。

这样有个基础:就是每个权限的值正好要是二进制位的对应值。
权限可以取的数就是二进制的进度值。如:1,2,4,8,16,32……(不超过数字表达范围)。

看你的题目: 3是发帖,4是删帖。要用二进制来做掩码计算。设计不科学。

两个方法:
1 建议使用1,2,4,8……来定义的你的权限。
如果改成:4是发帖,8是删帖
long power=4|8;
判断是否有发帖权限:power&4 >0

2 如果一定要用1,2,3,4来定义,那么要做进制操作。
long power=(1<<(3-1))|(1<<(4-1));
判断是否有发帖权限:(power&(1<<(3-1))) > 0

注:如果上面都不减去1,也行,就浪费一个位置。

‘捌’ java位运算符<<和>>还有>>>怎么用

左移<<
右移>> 和>>>
二进制的数,其中,对于>>>无论整数还是负数,最高位都补0
就这个区别而已,
还有一个结论是移动了n就相当于左移(乘)、右移(除)2的n次幂
比如:
16>>3等效于16除2的3次方,

‘玖’ java中的分离十位、个位的方式

java中两种不同的分离十位、个位的方式
//获取最高位(百位)
b = a / 100;
获取十位c=(a%100)/10; 或者c = (a / 10) % 10;
获取个位d=a%10; 或者 d = a % 100 % 10;

‘拾’ java中的按位与是什么意思

按位与是整数运算,整数以二进制形式,每一位进行与运输,例如6与7的计算过程,6和7的二进制分别是110、111,进行与运输要求两个数都为1结果为,否则结果为0,110与111的结果为110,也就是6与7=6。

看明白了吧,我是不是太罗嗦了点~~~

热点内容
vs2012添加文件夹 发布:2024-12-27 13:01:27 浏览:899
c语言统计单词数 发布:2024-12-27 12:58:09 浏览:57
手机服务密码怎么知道 发布:2024-12-27 12:51:44 浏览:465
oraclelinux使用 发布:2024-12-27 12:46:04 浏览:481
相册密码在哪里开 发布:2024-12-27 12:40:29 浏览:270
压缩解压支持库 发布:2024-12-27 12:31:46 浏览:712
php过滤注入 发布:2024-12-27 12:26:48 浏览:842
安卓手机怎么看手机配置 发布:2024-12-27 12:25:54 浏览:34
winccc脚本属性函数 发布:2024-12-27 12:25:15 浏览:61
安卓怎么设置照片格式 发布:2024-12-27 11:50:05 浏览:169