javanfs
① 如何提高webserver并发能力
1、HTML静态化
其实大家都知道,效率最高、消耗最小的就是纯静态化的 html页面,所以我们尽可能使我们的网站上的页面采用静态页面来实现, 这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,我们无法全部手动去挨个实现,于是出现了我们常见的信息发布系统CMS,像 我们常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页 面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。
除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化,有更新的时候再重新静态化也是大量使用的策略,像Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。
同 时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现,比如论坛中论 坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储再数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分 内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。
2、图片服务器分离
大家知道,对于Web服务器来说,不 管 是 Apache、IIS还是其他容器,图片是最消耗资源的,于是我们有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服 务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器 上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadMole,保证更高的系统消耗 和执行效率。
3、数据库集群和库表散列
大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是我们需要使用数据库集群或者库表散列。
在数据库集群方面,很多数据库都有自己的解决方案,Oracle、Sybase等都有很好的方案,常用的MySQL提供的Master/Slave也是类似的方案,您使用了什么样的DB,就参考相应的解决方案来实施即可。
上 面提到的数据库集群由于在架构、成本、扩张性方面都会受到所采用DB类型的限制,于是我们需要从应用程序的角度来考虑改善系统架构,库表散列是常用并且最 有效的解决方案。我们在应用程序中安装业务和应用或者功能模块将数据库进行分离,不同的模块对应不同的数据库或者表,再按照一定的策略对某个页面或者功能 进行更小的数据库散列,比如用户表,按照用户ID进行表散列,这样就能够低成本的提升系统的性能并且有很好的扩展性。sohu的论坛就是采用了这样的架 构,将论坛的用户、设置、帖子等信息进行数据库分离,然后对帖子、用户按照板块和ID进行散列数据库和表,最终可以在配置文件中进行简单的配置便能让系统 随时增加一台低成本的数据库进来补充系统性能。
4、缓存
缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。这里先讲述最基本的两种缓存。高级和分布式的缓存在后面讲述。
架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。
网 站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大 型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多 了,.net不是很熟悉,相信也肯定有。
5、镜像
镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同 网 络接入商和地域带来的用户访问速度差异,比如ChinaNet和ENet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实 时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等 工具。
6、负载均衡
负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。
负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择,我个人接触过一些解决方法,其中有两个架构可以给大家做参考。
硬件四层交换
第 四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。第四层交换功能就象是虚 IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、ftp、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的 载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决 定。
在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。Yahoo中国当初接近2000台服务器使用了三四台Alteon就搞定了。
软件四层交换
大家知道了硬件四层交换机的原理后,基于OSI模型来实现的软件四层交换也就应运而生,这样的解决方案实现的原理一致,不过性能稍差。但是满足一定量的压力还是游刃有余的,有人说软件实现方式其实更灵活,处理能力完全看你配置的熟悉能力。
软 件四层交换我们可以使用Linux上常用的LVS来解决,LVS就是Linux Virtual Server,他提供了基于心跳线heartbeat的实时灾难应对解决方案,提高系统的鲁棒性,同时可供了灵活的虚拟VIP配置和管理功能,可以同时满 足多种应用需求,这对于分布式的系统来说必不可少。
一个典型的使用负载均衡的策略就是,在软件或者硬件四层交换的基础上搭建squid集群,这种思路在很多大型网站包括搜索引擎上被采用,这样的架构低成本、高性能还有很强的扩张性,随时往架构里面增减节点都非常容易。
② 要架构一个网站,要求并发性好,安全性高,数据库oracle不能更改,有两种架构,请大家帮我分析哪种架构好
我在Cernet做过拨号接入平台的搭建,而后在Yahoo3721负载搜索引擎前端平台开发,又在猫扑处理过大型社区猫扑大杂烩的架构升级等工作,同时自己接触和开发过不少大中型网站的模块,因此在大型网站应对高负载和并发的解决方案上有一些积累和经验,可以和大家一起探讨一下。
一个小型的网站,比如个人网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构、性能的要求都很简单,随着互联网业务的不断丰富,网站相关的技术经过这些年的发展,已经细分到很细的方方面面,尤其对于大型网站来说,所采用的技术更是涉及面非常广,从硬件到软件、编程语言、数据库、WebServer、防火墙等各个领域都有了很高的要求,已经不是原来简单的html静态网站所能比拟的。
大型网站,比如门户网站。在面对大量用户访问、高并发请求方面,基本的解决方案集中在这样几个环节:使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器。但是除了这几个方面,还没法根本解决大型网站面临的高负载和高并发问题。
上面提供的几个解决思路在一定程度上也意味着更大的投入,并且这样的解决思路具备瓶颈,没有很好的扩展性,下面我从低成本、高性能和高扩张性的角度来说说我的一些经验。
1、HTML静态化
其实大家都知道,效率最高、消耗最小的就是纯静态化的html页面,所以我们尽可能使我们的网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,我们无法全部手动去挨个实现,于是出现了我们常见的信息发布系统CMS,像我们常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。
除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化,有更新的时候再重新静态化也是大量使用的策略,像Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。
同时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现,比如论坛中论坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储再数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。
2、图片服务器分离
大家知道,对于Web服务器来说,不管是Apache、IIS还是其他容器,图片是最消耗资源的,于是我们有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadMole,保证更高的系统消耗和执行效率。
3、数据库集群和库表散列
大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是我们需要使用数据库集群或者库表散列。
在数据库集群方面,很多数据库都有自己的解决方案,Oracle、Sybase等都有很好的方案,常用的MySQL提供的Master/Slave也是类似的方案,您使用了什么样的DB,就参考相应的解决方案来实施即可。
上面提到的数据库集群由于在架构、成本、扩张性方面都会受到所采用DB类型的限制,于是我们需要从应用程序的角度来考虑改善系统架构,库表散列是常用并且最有效的解决方案。我们在应用程序中安装业务和应用或者功能模块将数据库进行分离,不同的模块对应不同的数据库或者表,再按照一定的策略对某个页面或者功能进行更小的数据库散列,比如用户表,按照用户ID进行表散列,这样就能够低成本的提升系统的性能并且有很好的扩展性。sohu的论坛就是采用了这样的架构,将论坛的用户、设置、帖子等信息进行数据库分离,然后对帖子、用户按照板块和ID进行散列数据库和表,最终可以在配置文件中进行简单的配置便能让系统随时增加一台低成本的数据库进来补充系统性能。
4、缓存
缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。这里先讲述最基本的两种缓存。高级和分布式的缓存在后面讲述。
架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。
网站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多了,.net不是很熟悉,相信也肯定有。
5、镜像
镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网络接入商和地域带来的用户访问速度差异,比如ChinaNet和ENet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等工具。
6、负载均衡
负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。
负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择,我个人接触过一些解决方法,其中有两个架构可以给大家做参考。
硬件四层交换
第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。第四层交换功能就象是虚 IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。Yahoo中国当初接近2000台服务器使用了三四台Alteon就搞定了。
软件四层交换
大家知道了硬件四层交换机的原理后,基于OSI模型来实现的软件四层交换也就应运而生,这样的解决方案实现的原理一致,不过性能稍差。但是满足一定量的压力还是游刃有余的,有人说软件实现方式其实更灵活,处理能力完全看你配置的熟悉能力。
软件四层交换我们可以使用Linux上常用的LVS来解决,LVS就是Linux Virtual Server,他提供了基于心跳线heartbeat的实时灾难应对解决方案,提高系统的鲁棒性,同时可供了灵活的虚拟VIP配置和管理功能,可以同时满足多种应用需求,这对于分布式的系统来说必不可少。
一个典型的使用负载均衡的策略就是,在软件或者硬件四层交换的基础上搭建squid集群,这种思路在很多大型网站包括搜索引擎上被采用,这样的架构低成本、高性能还有很强的扩张性,随时往架构里面增减节点都非常容易。这样的架构我准备空了专门详细整理一下和大家探讨。
对于大型网站来说,前面提到的每个方法可能都会被同时使用到,我这里介绍得比较浅显,具体实现过程中很多细节还需要大家慢慢熟悉和体会,有时一个很小的squid参数或者apache参数设置,对于系统性能的影响就会很大,希望大家一起讨论,达到抛砖引玉之效。
③ java 怎么获得驱动器类型
listRoots
public static File[] listRoots() 列出可用的文件系统根。
特定 Java 平台可以支持零个或更多个分层组织的文件系统。每个文件系统有一个 root 目录,可以从这里到达文件系统中的所有其他文件。例如,Windows 平台为每个活动驱动器提供了一个根目录;UNIX 平台只有一个根目录,即 "/"。可用文件系统根的设置受各种系统级操作的影响,比如可移动介质的插入和弹出,以及断开或卸载那些物理磁盘或虚拟磁盘。
此方法返回一个 File 对象数组,这些对象表示可用文件系统根的根目录。可以保证本地机器上物理存在的任何文件的规范路径名都以此方法返回的根之一开始。
位于其他一些机器上的文件的规范路径名是通过远程文件系统协议(比如 SMB 或 NFS)访问的,它们可能以此方法返回的根之一开始,也可能不是这样。如果远程文件的路径名在语法上无法与本地文件的路径名进行区分,那么它将以此方法返回的根之一开始。例如,此方法将返回表示 Windows 平台上映射为网络驱动器根目录的 File 对象,而不返回包含 UNC 路径名的 File 对象。
与此类中的大多数方法不同,此方法不抛出安全性异常。如果存在安全管理器,且其 SecurityManager.checkRead(java.lang.String) 方法拒绝对特定根目录进行读访问,那么该目录将不会出现在结果中。
返回:表示可用文件系统根的 File 对象数组;如果无法确定根集,则返回 null。如果没有文件系统,那么该数组将为空。从以下版本开始:1.2
④ 一个五年架构师为什么基本年薪酬可以达到50万
架构师,我想很多人都知道,其实该职位头衔在最早的IT领域是没有的,它是近些年来由互联网的发展所引发的需求,因为现阶段的数据量及高并发的活跃好动,引起了不少传统的技术人员的力不从心,企业愈发关注到了系统架构的重要性,所以不同行业开始招募架构技术人员,架构师就诞生了。
架构设计的条件
以下三个条件不适合做架构设计
对架构不感兴趣,但又迫于需求;
入IT行业,年限小于4年的;
主观能动性弱,又安于现状的;
架构设计的优势
更好的梳理业务的结构体系;
更好的拓展、维护及性能优化;
更好的适应企业业务灵活的推进;
更好的适应大数据的冲洗和应对;
更好的稳定性、低成本及快速迭代;
架构设计时候需要注意的地方
架构设计需要注意的地方,不是怎么把架构搭建起来,而是必须根据业务需求,严格分析,实现该需求需要什么技术会更好及更长远发展的考虑;
另外,构建好的架构虽然可以运行,但是性能需要跟起来,否则架构设计会适得其反,增加不必要的工作量,那么下面就详细介绍下架构设计的策略。
平台的需求
客户需求
在线购物、在线支付或货到付款;
购买商品后,客户可以与客服沟通;
购买商品过程,物流的管理及跟踪;
收取到商品后,商品、物流评价打分;
客户的需求为最高,也代表了企业的核心需求,当然,企业需求还包括其它很多非功能性需求,具体请查看需求梳理部分。
平台的业务架构
根据业务的需求进行子系统模块划分,可以划分为商品子系统、购物子系统、支付子系统、物流子系统、客服子系统、评论子系统;而非核心需求可拆分出客服子系统、评论子系统及接口子系统。另外,根据各个子系统的核心等级,可拆分出核心子系统和非核心子系统,前者包括商品子系统、购物子系统、支付子系统及物流子系统;后者,则包括评论子系统、客服子系统及接口子系统。需要注意的是一般大型电商平台的物流系统是单独分离出来的系统(入库、出库、库存管理、配送管理及货品管理),而这里划分为子系统的主要目的是为演示核心架构,本架构中物流子系统一般作为对接和管理独立子系统的对接模块哦。
1、业务拆分目的
为了解决各个模块子系统间的耦合、维护及拓展性;
方便单独部署子系统,避免集中部署导致一个出问题,全部不能用;
分配专门的团队,负责具体的子系统,最大化工作效率安排;
应对大数据,高压力时,保护核心子系统正常使用;
2、业务的架构图
在上面的业务架构图中,将核心和非核心业务进行拆分,同时每个系统都要独立部署实现,做到大数据量压下,各个系统独立运作,提高可用性,必要时可以暂停掉非核心系统的资源开销,保证核心业务正常为用户服务。
平台的技术架构
在上面业务架构图基础上,我们需要一个技术架构的演变过程,一切只为满足用户的体验和支撑为前提,所以技术架构的搭建不是一蹴而就的,而是随着业务的不断衍变,系统的架构会逐渐完善更新,以实现应对业务数据量的冲击。
1、基本的架构设计
记得很早的时候,很多中小企业所采用的架构设计十分简单,基本使用一台服务器来满足一切需求部署,比如:一台服务器同时用作应用部署、数据库存储以及图片存储等,不料的是待用户数据达到50万以上,系统出现很多性能问题,尽管对数据库和程序做个各种性能优化,结果仍无明显改善,架构如下:
后来,IT程序猿发现图片的读写严重影响了系统性能,并将图片单独存放在独立服务器中,并且在架构中引入了Cache中间件,比如:Memcache,这种做法是可取的,而且比原来性能提高了1-2个性能级别,架构设计如下:
2、初级的架构设计
前几年,一般的电商网站的做法是选用三台服务器,一台部署应用,一台部署数据库,一台部署NFS文件系统,做到将各个规模庞大并耗用性能的部分剥离到不同服务器设备,再配备必要的缓存中间件,基本可以满足近1000万的数据量,具体的架构图如下:
但是,目前主流使用的网站架构已经不同,大多采用集群的方式来实现负载均衡和高可用性,架构可以是下面的样子:
注意:
如果涉及到多台网站服务器的话,就会存在Session如何同步的问题,一般也是最为常用的做法,就是使用Cache中间件来存储和管理Session信息。
3、优化的架构设计
这里为解决高并发,高可用的大型电商网站的架构设计方案,主要采用了分布式、集群、负载均衡、反向代理、消息队列及多级缓存技术。该架构设计方案,是现今比较流程的大型电商网站采用的架构模式,比如:淘宝、京东等,也许会有细微不同的地方,但大同小异哦!具体的架构图方案如下:
平台架构的总结
这里主要总结的是优化架构,架构按层次结构罗列组织,共分为四层,层次分工明确,高拓展,低耦合,负载均衡、集群、分布式及缓存等技术的使用,架构如下:
好了,电商平台的架构设计就介绍到这里,本篇主要是介绍架构设计的思路及应用的核心技术,供在架构设计的同学参考借鉴哦!有想了解更多的可以关注我
⑤ 急求java的手机单机赛车游戏《极品飞车16》的破解版
是新出的那个极品飞车16-亡命狂飙 吧,九游9game。Çn里有个英文破解版的,用手机登陆或用电脑opera浏览器登陆,去搜下很好找
⑥ java 提取字符串中包含所有的url, 正则表达式怎么写
import java.net.URL;
public class MainClass {
public static void main(String[] args) {
String host = "www.java2s.com";
String file = "/index.html";
String[] schemes = {"http", "https", "ftp", "mailto", "telnet", "file", "ldap", "gopher",
"jdbc", "rmi", "jndi", "jar", "doc", "netdoc", "nfs", "verbatim", "finger", "daytime",
"systemresource"};
for (int i = 0; i < schemes.length; i++) {
try {
URL u = new URL(schemes[i], host, file);
System.out.println(schemes[i] + " is supported\r\n");
} catch (Exception ex) {
System.out.println(schemes[i] + " is not supported\r\n");
}
}
}
}
⑦ 电脑有那些英语术语
相当的多,软件硬件方面的都有,如果有机会建议读一本关于计算机导论或入门的英文原版教材,原版教材其实并不难,里面有好多的计算机词汇,如果举例我想举一两个意义也不大,比如显示器monitor
⑧ 安装hadoop的步骤有哪些
hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFSHA、YARN等。最新的hadoop-2.4.1又增加了YARNHA
注意:apache提供的hadoop-2.4.1的安装包是在32位操作系统编译的,因为hadoop依赖一些C++的本地库,
所以如果在64位的操作上安装hadoop-2.4.1就需要重新在64操作系统上重新编译
(建议第一次安装用32位的系统,我将编译好的64位的也上传到群共享里了,如果有兴趣的可以自己编译一下)
前期准备就不详细说了,课堂上都介绍了
1.修改Linux主机名
2.修改IP
3.修改主机名和IP的映射关系
######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等)
/etc/hosts里面要配置的是内网IP地址和主机名的映射关系
4.关闭防火墙
5.ssh免登陆
6.安装JDK,配置环境变量等
集群规划:
主机名 IP 安装的软件 运行的进程
HA181 192.168.1.181 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA182 192.168.1.182 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA183 192.168.1.183 jdk、hadoop ResourceManager
HA184 192.168.1.184 jdk、hadoop ResourceManager
HA185 192.168.1.185 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA186 192.168.1.186 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA187 192.168.1.187 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
说明:
1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。ActiveNameNode对外提供服务,而StandbyNameNode则不对外提供服务,仅同步activenamenode的状态,以便能够在它失败时快速进行切换。
hadoop2.0官方提供了两种HDFSHA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当ActiveNameNode挂掉了,会自动切换StandbyNameNode为standby状态
2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调
安装步骤:
1.安装配置zooekeeper集群(在HA185上)
1.1解压
tar-zxvfzookeeper-3.4.5.tar.gz-C/app/
1.2修改配置
cd/app/zookeeper-3.4.5/conf/
cpzoo_sample.cfgzoo.cfg
vimzoo.cfg
修改:dataDir=/app/zookeeper-3.4.5/tmp
在最后添加:
server.1=HA185:2888:3888
server.2=HA186:2888:3888
server.3=HA187:2888:3888
保存退出
然后创建一个tmp文件夹
mkdir/app/zookeeper-3.4.5/tmp
再创建一个空文件
touch/app/zookeeper-3.4.5/tmp/myid
最后向该文件写入ID
echo1>/app/zookeeper-3.4.5/tmp/myid
1.3将配置好的zookeeper拷贝到其他节点(首先分别在HA186、HA187根目录下创建一个weekend目录:mkdir/weekend)
scp-r/app/zookeeper-3.4.5/HA186:/app/
scp-r/app/zookeeper-3.4.5/HA187:/app/
注意:修改HA186、HA187对应/weekend/zookeeper-3.4.5/tmp/myid内容
HA186:
echo2>/app/zookeeper-3.4.5/tmp/myid
HA187:
echo3>/app/zookeeper-3.4.5/tmp/myid
2.安装配置hadoop集群(在HA181上操作)
2.1解压
tar-zxvfhadoop-2.4.1.tar.gz-C/weekend/
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
#将hadoop添加到环境变量中
vim/etc/profile
exportJAVA_HOME=/app/jdk1.7.0_79
exportHADOOP_HOME=/app/hadoop-2.4.1
exportPATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下
cd/home/hadoop/app/hadoop-2.4.1/etc/hadoop
2.2.1修改hadoop-env.sh
exportJAVA_HOME=/app/jdk1.7.0_79
2.2.2修改core-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1-->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1/</value>
</property>
<!--指定hadoop临时目录-->
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop-2.4.1/tmp</value>
</property>
<!--指定zookeeper地址-->
<property>
<name>ha.zookeeper.quorum</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
</configuration>
2.2.3修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致-->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!--ns1下面有两个NameNode,分别是nn1,nn2-->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!--nn1的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>HA181:9000</value>
</property>
<!--nn1的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>HA181:50070</value>
</property>
<!--nn2的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>HA182:9000</value>
</property>
<!--nn2的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>HA182:50070</value>
</property>
<!--指定NameNode的元数据在JournalNode上的存放位置-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://HA185:8485;HA186:8485;HA187:8485/ns1</value>
</property>
<!--指定JournalNode在本地磁盘存放数据的位置-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/app/hadoop-2.4.1/journaldata</value>
</property>
<!--开启NameNode失败自动切换-->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!--配置失败自动切换实现方式-->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.</value>
</property>
<!--配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!--使用sshfence隔离机制时需要ssh免登陆-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!--配置sshfence隔离机制超时时间-->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
2.2.4修改mapred-site.xml
<configuration>
<!--指定mr框架为yarn方式-->
<property>
<name>maprece.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2.2.5修改yarn-site.xml
<configuration>
<!--开启RM高可用-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--指定RM的clusterid-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!--指定RM的名字-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--分别指定RM的地址-->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>HA183</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>HA184</value>
</property>
<!--指定zk集群地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>maprece_shuffle</value>
</property>
</configuration>
2.2.6修改slaves(slaves是指定子节点的位置,因为要在HA181上启动HDFS、在HA183启动yarn,
所以HA181上的slaves文件指定的是datanode的位置,HA183上的slaves文件指定的是nodemanager的位置)
HA185
HA186
HA187
2.2.7配置免密码登陆
#首先要配置HA181到HA182、HA183、HA184、HA185、HA186、HA187的免密码登陆
#在HA181上生产一对钥匙
ssh-keygen-trsa
#将公钥拷贝到其他节点,包括自己
ssh--idHA181
ssh--idHA182
ssh--idHA183
ssh--idHA184
ssh--idHA185
ssh--idHA186
ssh--idHA187
#配置HA183到HA184、HA185、HA186、HA187的免密码登陆
#在HA183上生产一对钥匙
ssh-keygen-trsa
#将公钥拷贝到其他节点
ssh--idHA184
ssh--idHA185
ssh--idHA186
ssh--idHA187
#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置HA182到HA181的免登陆
在HA182上生产一对钥匙
ssh-keygen-trsa
ssh--id-iHA181
2.4将配置好的hadoop拷贝到其他节点
scp-r/app/hadoop-2.5.1/HA182:/app/
scp-r/app/hadoop-2.5.1/HA183:/app/
scp-r/app/hadoop-2.5.1/HA184:/app/
scp-r/app/hadoop-2.5.1/HA185:/app/
scp-r/app/hadoop-2.5.1/HA186:/app/
scp-r/app/hadoop-2.5.1/HA187:/app/
###注意:严格按照下面的步骤
2.5启动zookeeper集群(分别在HA185、HA186、tcast07上启动zk)
cd/app/zookeeper-3.4.5/bin/
./zkServer.shstart
#查看状态:一个leader,两个follower
./zkServer.shstatus
2.6启动journalnode(分别在在HA185、HA186、HA187上执行)
cd/app/hadoop-2.5.1
hadoop-daemon.shstartjournalnode
#运行jps命令检验,HA185、HA186、HA187上多了JournalNode进程
2.7格式化ZKFC(在HA181上执行即可) hdfszkfc-formatZK
2.8格式化HDFS
#在HA181上执行命令:
hdfsnamenode-format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/app/hadoop-2.4.1/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到HA182的/weekend/hadoop-2.4.1/下。
scp-rtmp/HA182:/app/hadoop-2.5.1/
##也可以这样,建议hdfsnamenode-bootstrapStandby
2.9启动HDFS(在HA181上执行)
sbin/start-dfs.sh
2.10启动YARN(#####注意#####:是在HA183上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh
到此,hadoop-2.4.1配置完毕,可以统计浏览器访问:
http://192.168.1.181:50070
NameNode'HA181:9000'(active)
http://192.168.1.182:50070
NameNode'HA182:9000'(standby)
验证HDFSHA
首先向hdfs上传一个文件
hadoopfs-put/etc/profile/profile
hadoopfs-ls/
然后再kill掉active的NameNode
kill-9<pidofNN>
通过浏览器访问:http://192.168.1.182:50070
NameNode'HA182:9000'(active)
这个时候HA182上的NameNode变成了active
在执行命令:
hadoopfs-ls/
-rw-r--r--3rootsupergroup19262014-02-0615:36/profile
刚才上传的文件依然存在!!!
手动启动那个挂掉的NameNode
sbin/hadoop-daemon.shstartnamenode
通过浏览器访问:http://192.168.1.181:50070
NameNode'HA181:9000'(standby)
验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoopjarshare/hadoop/maprece/hadoop-maprece-examples-2.4.1.jarwordcount/profile/out
OK,大功告成!!!
CID-74d21742-3e4b-4df6-a99c-d52f703b49c0
测试集群工作状态的一些指令:
bin/hdfsdfsadmin-report 查看hdfs的各节点状态信息
bin/hdfshaadmin-getServiceStatenn1 获取一个namenode节点的HA状态
sbin/hadoop-daemon.shstartnamenode单独启动一个namenode进程
./hadoop-daemon.shstartzkfc单独启动一个zkfc进程
⑨ 如何使用java读写nfs文件系统中的文件
用NFS方式挂载根文件系统 由于原来的内核是用ATBOOT的方式的,不知道怎么传递参数(好像不能,网上查的nfs方式都是用U-boot的方式挂载的),因此决定用u-boot重新内核。 1.u-boot和内核 1.1编译内核 1.1.1由于板子光盘自带的内核触
⑩ Java访问Ubuntu的nfs共享路径时,总是报错
路径是否对、权限是否拥有
~~~~~~~~~~