python股市数据
⑴ python怎么抓新浪百度股票数据 datareader
应该都是可以获取的,一般获取数据有两个方法,get和post,在源码能够显示的使用的是get,而post一般是用异步加载的形式进行展现的。
⑵ 如何用python代码判断一段范围内股票最高点
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
登录
python+聚宽 统计A股市场个股在某时间段的最高价、最低价及其时间 原创
2019-10-12 09:20:50
开拖拉机的大宝
码龄4年
关注
使用工具pycharm + 聚宽数据源,统计A股市场个股在某时间段的最高价、最低价及其时间,并打印excel表格输出
from jqdatasdk import *
import pandas as pd
import logging
import sys
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)
# 聚宽数据账户名和密码设置
auth('username','password')
#获取A股列表,包括代号,名称,上市退市时间等。
security = get_all_securities(types=[], date=None)
pd2 = get_all_securities(['stock'])
# 获取股票代号
stocks = list(get_all_securities(['stock']).index)
# 获取股票名称
stocknames = pd2['display_name']
start_date = '2015-01-01'
end_date = '2018-12-31'
def get_stocks_high_low(start_date,end_date):
# 新建表,表头列
# 为:"idx","stockcode","stockname","maxvalue","maxtime","lowvalue","lowtime"
result = pd.DataFrame(columns=["idx", "stockcode", "stockname", "maxvalue", "maxtime", "lowvalue", "lowtime"])
for i in range(0,stocks.__len__()-1):
pd01 = get_price(stocks[i], start_date, end_date, frequency='daily',
fields=None, skip_paused=False,fq='pre', count=None)
result=result.append(pd.DataFrame({'idx':[i],'stockcode':[stocks[i]],'stockname':
[stocknames[i]],'maxvalue':[pd01['high'].max()],'maxtime':
[pd01['high'].idxmax()],'lowvalue': [pd01['low'].min()], 'lowtime':
[pd01['low'].idxmin()]}),ignore_index=True)
result.to_csv("stock_max_min.csv",encoding = 'utf-8', index = True)
logger.warning("执行完毕!
⑶ 如何使用python抓取炒股软件中资金数据
股票配资简单的说就是加杠杆,比如你有10万,可以做80万的事情0434
⑷ python对股票分析有什么作用
你好,Python对于股票分析来说,用处是很大的
Python,用数据软件分析可以做股票的量化程序,因为股票量化是未来的一种趋势,能够解决人为心理波动和冲动下单等不良行为,所以学好python量化的话,那么对股票来说有很大很大帮助
⑸ PYthon遍历语句求指导,如何通过python下载某时期所有股票日线信息然后存文件
你可以去官网看看怎么去做,
⑹ 怎样用python处理股票
用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。
⑺ 如何使用Python获取股票分时成交数据
导个tushare完事
⑻ 如何用python获取股票数据
在Python的QSTK中,是通过s_datapath变量,定义相应股票数据所在的文件夹。一般可以通过QSDATA这个环境变量来设置对应的数据文件夹。具体的股票数据来源,例如沪深、港股等市场,你可以使用免费的WDZ程序输出相应日线、5分钟数据到s_datapath变量所指定的文件夹中。然后可使用Python的QSTK中,qstkutil.DataAccess进行数据访问。
⑼ 如何用python计算某支股票持有90天的收益率
首先你要先获得这支股票90天的数据,可以存在一个arry中。
然后计算收益率 r = (arry[89]-arry[0])/arry[0],如果要计算任意连续90天的话只要循环就可以了。
许多人更喜欢去做短线,因为短线刺激,无法承受长线持股待涨的煎熬,可是假如不会做短线,则可能会导致亏得更快。做T的秘籍大家一定很想知道,今天就给大家讲讲。
我准备了好处给大家,机构精选的牛股大盘点!希望大家不要错过--速领!今日机构牛股名单新鲜出炉!
一、股票做T是什么意思
现在市场上,A股的交易市场模式是T+1,意思就是今天买的股票,只有明天才能卖出。
而股票做T,当天买入的股票在当天卖出,这就是股票进行T+0的交易操作,投资人在可交易的一天通过股票的涨幅和跌停有了股票差价,在股票大幅下跌时赶紧买入,涨得差不多之后再将买入的部分卖出,就是用这种方法赚钱的。
假如说,在昨天我手里还有1000股的xx股票,市价10元/股。今天一大早发现该股居然跌到了9.5元/股,然后趁机买入了1000股。结果到了下午时,这只股票的价格就突然间大幅上涨到一股10.5元,我就急忙地以10.5/股的价格售出1000股,然后获取(10.5-9.5)×1000=1000元的差价,这就是做T。
但是,不是每种股票做T都合适!正常来说,那些日内振幅空间较大的股票,它们是适合去做T的,比如说,每日能有5%的振幅空间。想知道某只股票适不适合的,点开这里去看一下吧,专业的人员会为你估计挑选出最适合你的T股票!【免费】测一测你的股票到底好不好?
二、股票做T怎么操作
怎么才能够把股票做到T?正常情况下分为两种方式,分别为正T和倒T。
正T即先买后卖,投资手里,手里面赚有这款股票,在当天股票开盘的时候下跌到了最低点时,投资者买入1000股,等到股票变高的时候在高点,将这1000股彻底卖出,持有的总股票数还是跟以前一样,T+0的效果这样就能够达到了,又能够享有中间赚取的差价。
而倒T即先卖后买。投资者通过严密计算得出,股票存在下降风险,因此在高位点先卖出手中的一部分股票,接着等股价回落后再去买进,总量仍旧有办法保持不变,然而,收益是会产生的。
比方投资者,他占有该股2000股,而10元/股是当天早上的市场价,觉得持有的股票在短时间内就会有所调整,,于是卖出手中的1500股,等股票跌到一股只需要9.5元时,这只股票差不多就已经能让他们感到满意了,再买入1500股,这就赚取了(10-9.5)×1500=750元的差价。
这时有人就问了,那要如何知道买入的时候正好是低点,卖出的时候正好是高点?
其实有一款买卖点捕捉神器,它能够判断股票的变化趋势,绝对能让你每次都抓住重点,点开链接就能立刻领取到了:【智能AI助攻】一键获取买卖机会
应答时间:2021-09-23,最新业务变化以文中链接内展示的数据为准,请点击查看
⑽ 如何选取过去每个月股票的市值 python
类似,可以修改一下
股票涨跌幅数据是量化投资学习的基本数据资料之一,下面以python代码编程为工具,获得所需要的历史数据。主要步骤有:
(1) #按照市值从小到大的顺序活得N支股票的代码;
(2) #分别对这一百只股票进行100支股票操作;
(3) #获取从2016.05.01到2016.11.17的涨跌幅数据;
(4) #选取记录大于40个的数据,去除次新股;
(5) #将文件名名为“股票代码.csv”。
具体代码如下:
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 23:04:33 2016
获取股票的历史涨跌幅,并分别存为csv格式
@author: yehxqq151376026
"""
import numpy as np
import pandas as pd
#按照市值从小到大的顺序活得100支股票的代码
df = get_fundamentals(
query(fundamentals.eod_derivative_indicator.market_cap)
.order_by(fundamentals.eod_derivative_indicator.market_cap.asc())
.limit(100),'2016-11-17', '1y'
)
#分别对这一百只股票进行100支股票操作
#获取从2016.05.01到2016.11.17的涨跌幅数据
#选取记录大于40个的数据,去除次新股
#将文件名名为“股票代码.csv”
for stock in range(100):
priceChangeRate = get_price_change_rate(df['market_cap'].columns[stock], '20160501', '20161117')
if priceChangeRate is None:
openDays = 0
else:
openDays = len(priceChangeRate)
if openDays > 40:
tempPrice = priceChangeRate[39:(openDays - 1)]
for rate in range(len(tempPrice)):
tempPrice[rate] = "%.3f" %tempPrice[rate]
fileName = ''
fileName = fileName.join(df['market_cap'].columns[i].split('.')) + '.csv'
fileName
tempPrice.to_csv(fileName)