当前位置:首页 » 编程语言 » pythontuplestring

pythontuplestring

发布时间: 2022-09-07 08:03:24

python语言有哪些数据类型

1、number

即数字类型,包含int(整型)、float(浮点型)、bool、complex(复数类型)四种基本类型,可用于存储数值;

类型转换:int()、float();

数学运算:+、-、*都与C语言相同,/表示做触发(结果一定为浮点数),//表示做除法,(结果只保留整数部分,去掉小数部分)% 表示做求余运算**
表示做幂次方运算 (注意运算次序)

2、string

即字符串类型,字符串需要用单引号’’或双引号" "括起来 三引号–注释,字符串也是一种特殊的元组。不能改变字符串中的某个元素的值;

基础操作:索引、切片、乘法-多次输出、成员资格检查、长度len()、最大值、最小值;

3、list

即列表类型,list的数据项可以是不同类型,其各个元素也可以改变,list是使用[]方括号包含各个数据项,+多个列表进行合并成一个列表*列表重复输出多次in某个项是否在列表中,可对列表项进行添加、修改、删除。

4、tuple

即元组类型,tuple 是使用( )小括号包含各个数据项,tuple与list的唯一区别是tuple的元素是不能修改,而list的元素可以修改。

5、set

即集合类型,是一个无序不重复元素的序列,使用大括号{}或者set()函数创建集合,用set()创建一个空几个,使用set也可以去重。

6、dictionary

即字典类型,字典的每个元素是键值对,无序的对象集合,是可变容器模型,且可存储任意类型对象,可以通过键来引用,键必须是唯一的且键名必须是不可改变的(即键名必须为Number、String、元组三种类型的某一种),但值则不必。

Ⅱ 软件测试中,python可变数据类型和不可变数据类型

不可变数据类型的就是内存中不管有多少个引用,相同的对象只占用了一块内存,但是它的缺点就是当需要对变量进行运算从而改变变量引用的对象的值时,由于是不可变的数据类型,所以必须创建新的对象,这样就会使得一次次的改变创建了一个个新的对象,不过不再使用的内存会被垃圾回收器回收。
其实其他语言,比如java也有类似的功能,就是一些基础的数字,例如前256个,都是固定在静态区的某个位置的,而不会随着指针变量的变化,而导致所指向的地址变化。

Ⅲ python 概念 list,string,tuple 类型区别 以及 数据类型区别

标准答案我是不知道,但是string的元素只能是字符;而list,
tuple中的元素几乎可以为任意类型(包括list,
tuple,
dict等)。

Ⅳ python 函数参数类型

python 的函数参数类型分为4种:
1.位置参数:调用函数时根据函数定义的参数位置来传递参数,位置参数也可以叫做必要参数,函数调用时必须要传的参数。

当参数满足函数必要参数传参的条件,函数能够正常执行:
add(1,2) #两个参数的顺序必须一一对应,且少一个参数都不可以
当我们运行上面的程序,输出:

当函数需要两个必要参数,但是调用函数只给了一个参数时,程序会抛出异常
add(1)
当我们运行上面的程序,输出:

当函数需要两个必要参数,但是调用函数只给了三个参数时,程序会抛出异常
add(1,2,3)
当我们运行上面的程序,输出

2.关键字参数:用于函数调用,通过“键-值”形式加以指定。可以让函数更加清晰、容易使用,同时也清除了参数的顺序需求。
add(1,2) # 这种方式传参,必须按顺序传参:x对应1,y对应:2
add(y=2,x=1) #以关健字方式传入参数(可以不按顺序)

正确的调用方式
add(x=1, y=2)
add(y=2, x=1)
add(1, y=2)
以上调用方式都是允许的,能够正常执行

错误的调用方式
add(x=1, 2)
add(y=2, 1)
以上调用都会抛出SyntaxError 异常

上面例子可以看出:有位置参数时,位置参数必须在关键字参数的前面,但关键字参数之间不存在先后顺序的
3.默认参数:用于定义函数,为参数提供默认值,调用函数时可传可不传该默认参数的值,所有位置参数必须出现在默认参数前,包括函数定义和调用,有多个默认参数时,调用的时候,既可以按顺序提供默认参数,也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上

默认参数的函数定义

上面示例第一个是正确的定义位置参数的方式,第二个是错误的,因为位置参数在前,默认参数在后
def add1(x=1,y) 的定义会抛出如下异常

默认参数的函数调用

注意:定义默认参数默认参数最好不要定义为可变对象,容易掉坑
不可变对象:该对象所指向的内存中的值不能被改变,int,string,float,tuple
可变对象,该对象所指向的内存中的值可以被改变,dict,list
这里只要理解一下这个概念就行或者自行网络,后续会写相关的专题文章讲解
举一个简单示例

4.可变参数区别:定义函数时,有时候我们不确定调用的时候会多少个参数,j就可以使用可变参数
可变参数主要有两类:
*args: (positional argument) 允许任意数量的可选位置参数(参数),将被分配给一个元组, 参数名前带*,args只是约定俗成的变量名,可以替换其他名称
**kwargs:(keyword argument) 允许任意数量的可选关键字参数,,将被分配给一个字典,参数名前带**,kwargs只是约定俗成的变量名,可以替换其他名称

*args 的用法

args 是用来传递一个非键值对的可变数量的参数列表给函数
语法是使用
符号的数量可变的参数; 按照惯例,通常是使用arg这个单词,args相当于一个变量名,可以自己定义的

在上面的程序中,我们使用* args作为一个可变长度参数列表传递给add()函数。 在函数中,我们有一个循环实现传递的参数计算和输出结果。
还可以直接传递列表或者数组的方式传递参数,以数组或者列表方式传递参数名前面加(*) 号

理解* * kwargs

**kwargs 允许你将不定长度的键值对, 作为参数传递给函数,这些关键字参数在函数内部自动组装为一个dict

下篇详细讲解 *args, **kwargs 的参数传递和使用敬请关注

Ⅳ 列表,元组,字符串是python的什么序列

序列
序列是Python中最基本的数据结构,包括字符串、列表、元组。

序列,顾名思义,是有序的,序列都有索引,都能进行索引、切片(截取)、加(连接)、乘(倍增)、检查成员的操作。

因为序列有序,可通过位置来区分元素,所以序列中可含有相同的元素。

序列的通用操作

1、索引

seq[index] index从0开始,支持负数,-1表示最后一个元素。

2、切片(截取)

seq[start:end] 可截取子序列,返回的是副本,原序列不变。缺省时默认start为0,end为-1。

3、+(连接)

seq1+seq2+seq3+..... 将多个序列连接为一个序列,返回的是副本,原序列不变

序列的类型要相同,才能相加,比如列表只能+列表,不能+字符串。

4、*(倍增)

seq*n 将序列扩展为原来的n倍,比如“hello”*2就是“hellohello”。返回的是副本,原序列不变。

5、in、not in(检查成员)

element in/not in seq 判断某个成员是否在序列中,返回值是bool型

6、python内置函数,不必导入模块:

len(seq) 返回序列长度(元素个数)

max(seq) 返回序列中值最大的元素

min(seq) 返回序列中值最小的元素

列表(List)

列表中的元素类型可以不同,甚至可以嵌套复杂的数据类型。列表用中括号[ ]表示。
list1=[1,2,3] #类型相同

list2=[1,"ok",[1,2,3]] #类型不同&&嵌套

列表的常用方法

函数

描述

list.append(ele)

在list末尾添加一个元素

list.insert(index,ele)

在指定位置插入一个元素

list.count(ele)

统计list中ele出现的次数
list.extend(x)

扩展list,x可以是列表、元组、集合、字典(只添加key)。添加到list的末尾。

+连接只能连接相同类型的序列。

list.index(ele)

索引元素,返回索引

list.pop([index])

弹出(删除)并返回指定位置上的元素,,缺省index时默认为-1(最后一个元素)。

list.remove(ele)

移除指定元素,若list中有多个ele,只移除第一个ele

list.()

复制list,返回复制的列表。示例:list2=list1.()

list.clear()

清空列表
list.reverse()
反序排列
list.sort(reverse=True)
将列表中的元素按升/降序排列,缺省参数时默认为False(升序),True是降序。示例:

list.sort() #升序排列

list.sort(reverse=True) #降序排列

注意:此函数不返回排序后的列表。

列表(List)是可变的,如果上述方法修改了List,List会改变。

数字(Number)、字符串(String)、元组(Tuple)是不可变的,操作时返回的往往是副本,原来的值不变。

元组(Tuple)

元组中可以含有不同类型的数据。

元组不能被修改,不能删除、修改元组中的元素,但可以用del删除整个元组。

元组用小括号()表示。

tuple1=() #空元组

tuple2=(1,4,3)

tuple3=(1,"ok",[1,2,3]) #类型不同&&嵌套

列表、元组之间的转换

1、list(tup) 将元组转换为列表

myTuple=(1,2,3)print(list(myTuple)) #[1, 2, 3]

"""python的内置函数list(tup)可以将元组转换为列表,并返回该列表

此函数不会修改元组本身,myTuple仍是元组,本身不会变成列表"""

2、tuple(list) 将列表转换元组

myList=[1,2,3]print(tuple(myList)) #(1, 2, 3)

"""python的内置函数tuple(list)可以将列表转换为元组,并返回该元组

此函数不会修改列表本身,myList仍是列表,本身不会变成元组"""

这2种方法均不会修改列表、元组本身。

Ⅵ 如何成功地使用 dictionary

本文研究 Python 类型层次结构并介绍 dictionary 容器类型。与前面文章中讨论的 Python tuple、string 和 list 容器类型不同,dictionary 类型是一个无序的容器,依赖于键-值映射。因此,要根据键值访问 dictionary 中的元素,而不是根据它们在序列中的位置。dictionary 类型的独特特性看起来可能不同寻常,但是如果使用得当,它们可以提供强大的能力。

dictionary

我们都曾经使用过语言词典来查找不认识的单词的定义。语言词典针对给定的单词(比如 python)提供一组标准的信息。这种系统将定义和其他信息与实际的单词关联(映射)起来。使用单词作为键定位器来寻找感兴趣的信息。这种概念延伸到 Python 编程语言中,就成了特殊的容器类型,称为 dictionary。

dictionary 数据类型在许多语言中都存在。它有时候称为关联 数组(因为数据与一个键值相关联),或者作为散列表。但是在 Python 中,dictionary 是一个很好的对象,因此即使是编程新手也很容易在自己的程序中使用它。按照正式的说法,Python 中的 dictionary 是一种异构的、易变的映射容器数据类型。

创建 dictionary

本系列中前面的文章介绍了 Python 编程语言中的一些容器数据类型,包括 tuple、string 和 list(参见 参考资料)。这些容器的相似之处是它们都是基于序列的。这意味着要根据元素在序列中的位置访问这些集合中的元素。所以,给定一个名为 a 的序列,就可以使用数字索引(比如 a[0] )或片段(比如 a[1:5])来访问元素。Python 中的 dictionary 容器类型与这三种容器类型的不同之处在于,它是一个无序的集合。不是按照索引号,而是使用键值来访问集合中的元素。这意味着构造 dictionary 容器比 tuple、string 或 list 要复杂一些,因为必须同时提供键和相应的值,如清单 1 所示。

清单 1. 在 Python 中创建 dictionary,第 1 部分

>>> d = {0: ‘zero’, 1: ‘one’, 2 : ‘two’, 3 : ‘three’, 4 : ‘four’, 5: ‘five’}
>>> d
{0: ‘zero’, 1: ‘one’, 2: ‘two’, 3: ‘three’, 4: ‘four’, 5: ‘five’}
>>> len(d)
>>> type(d) # Base object is the dict class
<type ‘dict’>
>>> d = {} # Create an empty dictionary
>>> len(d)
>>> d = {1 : ‘one’} # Create a single item dictionary
>>> d
{1: ‘one’}
>>> len(d)
>>> d = {‘one’ : 1} # The key value can be non-numeric
>>> d
{‘one’: 1}
>>> d = {‘one’: [0, 1,2 , 3, 4, 5, 6, 7, 8, 9]}
>>> d
{‘one’: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}
复制代码

如这个例子所示,在 Python 中创建 dictionary 要使用花括号和以冒号分隔的键-值组合。如果没有提供键-值组合,那么就会创建一个空的 dictionary。使用一个键-值组合,就会创建具有一个元素的 dictionary,以此类推,直至您需要的任何规模。与任何容器类型一样,可以使用内置的 len 方法查明集合中元素的数量。

前面的示例还演示了关于 dictionary 容器的另一个重要问题。键并不限制为整数;它可以是任何不易变的数据类型,包括 integer、float、tuple 或 string。因为 list 是易变的,所以它不能作为 dictionary 中的键。但是 dictionary 中的值可以是任何数据类型的。

最后,这个示例说明了 Python 中 dictionary 的底层数据类型是 dict 对象。要进一步了解如何使用 Python 中的 dictionary,可以使用内置的帮助解释器来了解 dict 类,如清单 2 所示。

清单 2. 获得关于 dictionary 的帮助

>>> help(dict)on class dict in mole __builtin__:
dict(object)
| dict() -> new empty dictionary.
| dict(mapping) -> new dictionary initialized from a mapping object’s
| (key, value) pairs.
| dict(seq) -> new dictionary initialized as if via:
| d = {}
| for k, v in seq:
| d[k] = v
| dict(**kwargs) -> new dictionary initialized with the name=value pairs
| in the keyword argument list. For example: dict(one=1, two=2)
|
| Methods defined here:
|
| __cmp__(…)
| x.__cmp__(y) <==> cmp(x,y)
|
| __contains__(…)
| x.__contains__(y) <==> y in x
|
| __delitem__(…)
| x.__delitem__(y) <==> del x[y]
…[/code]关于 dict 类的帮助指出,可以使用构造函数直接创建 dictionary,而不使用花括号。既然与其他容器数据类型相比,在创建 dictionary 时必须提供更多的数据,那么这些创建方法比较复杂也就不足为奇了。但是,在实践中使用 dictionary 并不难,如清单 3 所示。

清单 3. 在 Python 中创建 dictionary,第 2 部分

>>> l = [0, 1,2 , 3, 4, 5, 6, 7, 8, 9]
>>> d = dict(l)(most recent call last):
File "<stdin>", line 1, in ?: can't convert dictionary
update sequence element #0 to a sequence
>>> l = [(0, 'zero'), (1, 'one'), (2, 'two'), (3, 'three')]
>>> d = dict(l)
>>> d
{0: 'zero', 1: 'one', 2: 'two', 3: 'three'}
>>> l = [[0, 'zero'], [1, 'one'], [2, 'two'], [3, 'three']]
>>> d
{0: 'zero', 1: 'one', 2: 'two', 3: 'three'}
>>> d = dict(l)
>>> d
{0: 'zero', 1: 'one', 2: 'two', 3: 'three'}
>>> d = dict(zero=0, one=1, two=2, three=3)
>>> d
{'zero': 0, 'three': 3, 'two': 2, 'one': 1}
>>> d = dict(0=zero, 1=one, 2=two, 3=three): keyword can't be an expression
复制代码

可以看到,创建 dictionary 需要键值和数据值。第一次从 list 创建 dictionary 的尝试失败了,这是因为没有匹配的键-数据值对。第二个和第三个示例演示了如何正确地创建 dictionary:在第一种情况下,使用一个 list,其中的每个元素都是一个 tuple;在第二种情况下,也使用一个 list,但是其中的每个元素是另一个 list。在这两种情况下,内层容器都用于获得键到数据值的映射。

直接创建 dict 容器的另一个方法是直接提供键到数据值的映射。这种技术允许显式地定义键和与其对应的值。这个方法其实用处不大,因为可以使用花括号完成相同的任务。另外,如前面的例子所示,在采用这种方式时对于键不能使用数字,否则会导致抛出一个异常。

访问和修改 dictionary

创建了 dictionary 之后,需要访问其中包含的数据。访问方式与访问任何 Python 容器数据类型中的数据相似,如清单 4 所示。

清单 4. 访问 dictionary 中的元素

>>> d = dict(zero=0, one=1, two=2, three=3)
>>> d
{'zero': 0, 'three': 3, 'two': 2, 'one': 1}
>>> d['zero']
>>> d['three']
>>> d = {0: 'zero', 1: 'one', 2 : 'two', 3 : 'three', 4 : 'four', 5: 'five'}
>>> d[0]
'zero'
>>> d[4]
'four'
>>> d[6](most recent call last):
File "<stdin>", line 1, in ?: 6
>>> d[:-1](most recent call last):
File "<stdin>", line 1, in ?: unhashable type
复制代码

可以看到,从 dictionary 中获取数据值的过程几乎与从任何容器类型中获取数据完全一样。在容器名后面的方括号中放上键值。当然,dictionary 可以具有非数字的键值,如果您以前没有使用过这种数据类型,那么适应这一点需要些时间。因为在 dictionary 中次序是不重要的(dictionary 中数据的次序是任意的),所以可以对其他容器数据类型使用的片段功能,对于 dictionary 是不可用的。试图使用片段或者试图从不存在的键访问数据就会抛出异常,指出相关的错误。

Python 中的 dictionary 容器也是易变的数据类型,这意味着在创建它之后可以修改它。如清单 5 所示,可以添加新的键到数据值的映射,可以修改现有的映射,还可以删除映射。

清单 5. 修改 dictionary

>>> d = {0: 'zero', 1: 'one', 2: 'two', 3: 'three'}
>>> d[0]
'zero'
>>> d[0] = 'Zero'
>>> d
{0: 'Zero', 1: 'one', 2: 'two', 3: 'three'}
>>> d[4] = 'four'
>>> d[5] = 'five'
>>> d
{0: 'Zero', 1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five'}
>>> del d[0]
>>> d
{1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five'}
>>> d[0] = 'zero'
>>> d
{0: 'zero', 1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five'}
复制代码

清单 5 演示了几个重点。首先,修改数据值是很简单的:将新的值分配给适当的键。其次,添加新的键到数据值的映射也很简单:将相关数据分配给新的键值。Python 自动进行所有处理。不需要调用 append 这样的特殊方法。对于 dictionary 容器,次序是不重要的,所以这应该好理解,因为不是在 dictionary 后面附加映射,而是将它添加到容器中。最后,删除映射的办法是使用 del 操作符以及应该从容器中删除的键。

在清单 5 中有一个情况看起来有点儿怪,键值是按照数字次序显示的,而且这个次序与插入映射的次序相同。不要误解 —— 情况不总是这样的。Python dictionary 中映射的次序是任意的,对于不同的 Python 安装可能会有变化,甚至多次使用同一 Python 解释器运行相同代码也会有变化。如果在一个 dictionary 中使用不同类型的键和数据值,那么就很容易看出这一点,如清单 6 所示。

清单 6. 异构的容器

>>> d = {0: 'zero', 'one': 1}
>>> d
{0: 'zero', 'one': 1}
>>> d[0]
'zero'
>>> type(d[0])
<type 'str'>
>>> d['one']
>>> type(d['one'])
<type 'int'>
>>> d['two'] = [0, 1, 2]
>>> d
{0: 'zero', 'two': [0, 1, 2], 'one': 1}
>>> d[3] = (0, 1, 2, 3)
>>> d
{0: 'zero', 3: (0, 1, 2, 3), 'two': [0, 1, 2], 'one': 1}
>>> d[3] = 'a tuple'
>>> d
{0: 'zero', 3: 'a tuple', 'two': [0, 1, 2], 'one': 1}
复制代码

如这个例子所示,可以在一个 dictionary 中使用不同数据类型的键和数据值。还可以通过修改 dictionary 添加新的类型。最后,产生的 dictionary 的次序并不与插入数据的次序匹配。本质上,dictionary 中元素的次序是由 Python dictionary 数据类型的实际实现控制的。新的 Python 解释器很容易改变这一次序,所以一定不要依赖于元素在 dictionary 中的特定次序。

用 dictionary 进行编程

作为正式的 Python 数据类型,dictionary 支持其他较简单数据类型所支持的大多数操作。这些操作包括一般的关系操作符,比如 <、> 和 ==,如清单 7 所示。

清单 7. 一般关系操作符

>>> d1 = {0: 'zero'}
>>> d2 = {'zero':0}
>>> d1 < d2
>>> d2 = d1
>>> d1 < d2
>>> d1 == d2
>>> id(d1)
>>> id(d2)
>>> d2 = d1.()
>>> d1 == d2
>>> id(d1)
>>> id(d2)
复制代码

前面的示例创建两个 dictionary 并使用它们测试 < 关系操作符。尽管很少以这种方式比较两个 dictionary;但是如果需要,可以这样做。

然后,这个示例将赋值给变量 d1 的 dictionary 赋值给另一个变量 d2。注意,内置的 id() 方法对于 d1 和 d2 返回相同的标识符值,这说明这不是复制操作。要想复制 dictionary ,可以使用 () 方法。从这个示例中的最后几行可以看出,副本与原来的 dictionary 完全相同,但是容纳这个 dictionary 的变量具有不同的标识符。

在 Python 程序中使用 dictionary 时,很可能希望检查 dictionary 中是否包含特定的键或值。如清单 8 所示,这些检查很容易执行。

清单 8. 条件测试和 dictionary

>>> d = {0: 'zero', 3: 'a tuple', 'two': [0, 1, 2], 'one': 1}
>>> d.keys()
[0, 3, 'two', 'one']
>>> if 0 in d.keys():
... print 'True'
...
>>> if 'one' in d:
... print 'True'
...
>>> if 'four' in d:
... print 'Dictionary contains four'
... elif 'two' in d:
... print 'Dictionary contains two'
... contains two
复制代码

测试 dictionary 中键或数据值的成员关系是很简单的。dictionary 容器数据类型提供几个内置方法,包括 keys() 方法和 values() 方法(这里没有演示)。这些方法返回一个列表,其中分别包含进行调用的 dictionary 中的键或数据值。

因此,要判断某个值是否是 dictionary 中的键,应该使用 in 操作符检查这个值是否在调用 keys() 方法所返回的键值列表中。可以使用相似的操作检查某个值是否在调用 values() 方法所返回的数据值列表中。但是,可以使用 dictionary 名作为简写表示法。这是有意义的,因为一般希望知道某个数据值(而不是键值)是否在 dictionary 中。

在 “Discover Python, Part 6” 中,您看到了使用 for 循环遍历容器中的元素是多么容易。同样的技术也适用于 Python dictionary,如清单 9 所示。

清单 9. 迭代和 dictionary

>>> d = {0: 'zero', 3: 'a tuple', 'two': [0, 1, 2], 'one': 1}
>>> for k in d.iterkeys():
... print d[k]
... tuple
[0, 1, 2]
>>> for v in d.itervalues():
... print v
... tuple
[0, 1, 2]
>>> for k, v in d.iteritems():
... print 'd[',k,'] = ',v
... [ 0 ] = zero[ 3 ] = a tuple[ two ] = [0, 1, 2][ one ] = 1
复制代码

这个示例演示了遍历 dictionary 的三种方式:使用从 iterkeys()、itervalues() 或 iteritems() 方法返回的 Python 迭代器。(顺便说一下,可以通过在 dictionary 上直接调用适当方法,比如 d.iterkeys(),从而检查这些方法是否返回一个迭代器而不是容器数据类型。)iterkeys() 方法允许遍历 dictionary 的键,而 itervalues() 方法允许遍历 dictionary 包含的数据值。另一方面,iteritems() 方法允许同时遍历键到数据值的映射。

dictionary:另一种强大的 Python 容器

本文讨论了 Python dictionary 数据类型。dictionary 是一种异构的、易变的容器,依赖键到数据值的映射(而不是特定的数字次序)来访问容器中的元素。访问、添加和删除 dictionary 中的元素都很简单,而且 dictionary 很容易用于复合语句,比如 if 语句或 for 循环。可以在 dictionary 中存储所有不同类型的数据,可以按照名称或其他复合键值(比如 tuple)访问这些数据,所以 Python dictionary 使开发人员能够编写简洁而又强大的编程语句。

Ⅶ python3种数据类型

Python3 中有六个标准的数据类型:Number(数字) + String(字符串) + List(列表) + Tuple(元组) + Sets(集合) + Dictionary(字典)。
Number(数字)
数字类型是顾名思义是用来存储数值的,需要记住的是,有点和Java的字符串味道差不多,如果改变了数字数据类型的值,将重新分配内存空间。
可以使用del语句删除一些数字对象的引用:del var1[,var2[,var3[....,varN]]]]。
Python 支持三种不同的数值类型:
1.整型(Int) - 通常被称为是整型或整数,是正或负整数,不带小数点。Python3 整型是没有限制大小的,可以当作 Long 类型使用,所以 Python3 没有 Python2 的 Long 类型。
2.浮点型(float) - 浮点型由整数部分与小数部分组成,浮点型也可以使用科学计数法表示(2.5e2 = 2.5 x 102 = 250)
3.复数( (complex)) - 复数由实数部分和虚数部分构成,可以用a + bj,或者complex(a,b)表示, 复数的实部a和虚部b都是浮点型。
数字类型转换
1.int(x) 将x转换为一个整数。
2.float(x) 将x转换到一个浮点数。
3.complex(x) 将x转换到一个复数,实数部分为 x,虚数部分为 0。
4.complex(x, y) 将 x 和 y 转换到一个复数,实数部分为 x,虚数部分为 y。x 和 y 是数字表达式。
额外说明
和别的语言一样,数字类型支持各种常见的运算,不过python的运算比别的大多数常见语言都更加丰富,此外,还有大量丰富的方法,提供更高效的开发。
String(字符串)
创建字符串
创建字符串可以使用单引号、双引号、三单引号和三双引号,其中三引号可以多行定义字符串,有点类似ES6中的反引号。
Python 不支持单字符类型,单字符也在Python也是作为一个字符串使用。
访问字符串中的值
和ES一样,可以使用方括号来截图字符串,例子如下:
val_str='yelloxing'

print(val_str[0]) #y

print(val_str[1:3]) #el

print(val_str[:3]) #yel

print(val_str[:5]) #yello

字符串运算符
除了上面已经说明的方括号,还有一些别的字符串运算,具体查看文档。
字符串格式化
temp="我叫 %s 今年 %d 岁!" % ('心叶', 7)

print('['+temp+']') #[我叫 心叶 今年 7 岁!]

如上所示,字符串支持格式化,当然,出来上面用到的%s和%d以外,还有一些别的,具体看文档;是不是感觉有点C语言的味道。
额外说明
所有的字符串都是Unicode字符串(针对python3),有很多有用的方法,真的很有ES和C结合体的味道。
List(列表)
序列是Python中最基本的数据结构。序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推。
Python有6个序列的内置类型(列表、元组、字符串、Unicode字符串、buffer对象和xrange对象)。
列表其实类似数组,具体的一些操作就很像字符串(类似ES中数组和字符串的关系)。
常见运算
下面用一个例子来展示一些常见的运算:
val_arr=['Made','in','China']

del val_arr[1]

print(val_arr) #['Made', 'China']

print(len(val_arr)) #2

val_newarr=val_arr+[':information']

print(val_newarr) #['Made', 'China', ':information']

val_arr=val_arr*2

print(val_arr) #['Made', 'China', 'Made', 'China']

print('in' in val_arr) #False

print('Made' in val_arr) #True

for row in val_newarr:

print(row, end=" - ") #Made - China - :information -

print(val_newarr[-1]) #:information

print(val_newarr[1:]) #['China', ':information']

再来看一个有用的例子:
cols=3

rows=2

list_2d = [[0 for col in range(cols)] for row in range(rows)]

print(list_2d) #[[0, 0, 0], [0, 0, 0]]

嵌套列表
使用嵌套列表即在列表里创建其它列表,例如:
loop_arr=['yelloxing','心叶']

result_arr=[loop_arr,'同级别']

print(result_arr) #[['yelloxing', '心叶'], '同级别']

列表的嵌套就很灵活,此外随便提一下:和前面说的一样,也有很多方法提供高效的开发。
Tuple(元组)
元组与列表类似,不同之处在于元组的元素不能修改,元组使用小括号,列表使用方括号。
创建
元组中只包含一个元素时,需要在元素后面添加逗号,否则括号会被当作运算符使用
tup1 = ('Google', 'Runoob', 1997, 2000);

tup2 = (1, 2, 3, 4, 5 );

tup3 = "a", "b", "c", "d";

print(tup1) #('Google', 'Runoob', 1997, 2000)

print(tup2) #(1, 2, 3, 4, 5)

print(tup3) #('a', 'b', 'c', 'd')

基本操作
和列表的操作很相似,下面说一个几天特殊的地方:
1.del可以删除某个元组,不过不可以删除元组的某个条目。
2.不可以修改,或许元组会更快,感觉的,没有实际测试。
3.由于元组不可以修改,虽然同样有一些方法,不过和修改相关的方法就没有了。
Sets(集合)
回想一下数学里面的集合,合、交、差、补等运算是不是一下子回想起来了,这里的集合也有这些方法。
和Java的集合类似,一个无序不重复元素集(与列表和元组不同,集合是无序的,也无法通过数字进行索引)。
更具体的说明,如果必要会在单独说明。
Dictionary(字典)
字典是另一种可变容器模型,且可存储任意类型对象。
字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中,键必须是唯一的,但值则不必。
和ES中的JSON的差不多,操作也很像,不过区别也很大,内置方法很多,具体还是一样,看文档去。
删除字典元素
可以用del删除一个条目或字典,也可以用clear()方法清空字典(比如现在有字段dict,就是:dict.clear())。

Ⅷ Python tuple怎么转成字符串

用提取列表和元组值的方法,取得日期字符串就行了,具体程序如下

a=[('2019-02-22',),('2019-02-25',),('2019-02-26',),('2019-02-27',),('2019-02-28',),('2019-03-01',),('2019-03-04',)]

foriinrange(len(a)):

print(a[i][0])

源代码(注意源代码的缩进)

Ⅸ python的数据类型有哪些

python数据类型主要分为以下六大类:Numbers(数字)、String(字符串)、List(列表、Tuple(元组)、Dictionary(字典)、Set(集合)。



Python的六个标准数据类型中:

不可变数据(3 个):Number(数字)、String(字符串)、Tuple(元组)。

可变数据(3 个):List(列表)、Dictionary(字典)、Set(集合)。

字符串类型:

python的字符串或串(String)是由数字、字母、下划线组成的一串字符。

热点内容
京东架构师缓存经验 发布:2025-01-13 15:33:00 浏览:726
android图片颜色 发布:2025-01-13 15:26:09 浏览:268
国家税务总局电脑服务器 发布:2025-01-13 15:10:24 浏览:596
金立老款机的开机密码是多少 发布:2025-01-13 15:04:45 浏览:456
湖南网上办税初始密码多少 发布:2025-01-13 15:02:49 浏览:417
怎么使用笔记本连接服务器 发布:2025-01-13 15:02:48 浏览:705
长城cs75plus选哪个配置 发布:2025-01-13 14:54:05 浏览:22
php与大象 发布:2025-01-13 14:48:34 浏览:344
linux编辑器下载 发布:2025-01-13 14:47:01 浏览:737
如何清理qq存储空间vivo 发布:2025-01-13 14:35:28 浏览:364