python线程同步
A. python多线程
那是当然。你这样写就可以了
self.p[:]=array
这样写法的含义就是指针不变。只换内容。这样就可以同步了。
你的写法是,新建一个数组,再把指针缎带self.p,如果其它的线程就会出问题。
另外你的p应该放在__init__之前。引用时使用T.p来引用,这样更合理一些。
B. Python中进程与线程的区别是什么
Num01–>线程
线程是操作系统中能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。
一个线程指的是进程中一个单一顺序的控制流。
一个进程中可以并发多条线程,每条线程并行执行不同的任务。
Num02–>进程
进程就是一个程序在一个数据集上的一次动态执行过程。
进程有以下三部分组成:
1,程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成。
2,数据集:数据集则是程序在执行过程中需要的资源,比如图片、音视频、文件等。
3,进程控制块:进程控制块是用来记录进程的外部特征,描述进程的执行变化过程,系统可以用它来控制和管理进程,它是系统感知进程存在的唯一标记。
Num03–>进程和线程的区别:
1、运行方式不同:
进程不能单独执行,它只是资源的集合。
进程要操作CPU,必须要先创建一个线程。
所有在同一个进程里的线程,是同享同一块进程所占的内存空间。
2,关系
进程中第一个线程是主线程,主线程可以创建其他线程;其他线程也可以创建线程;线程之间是平等的。
进程有父进程和子进程,独立的内存空间,唯一的标识符:pid。
3,速度
启动线程比启动进程快。
运行线程和运行进程速度上是一样的,没有可比性。
线程共享内存空间,进程的内存是独立的。
4,创建
父进程生成子进程,相当于复制一份内存空间,进程之间不能直接访问
创建新线程很简单,创建新进程需要对父进程进行一次复制。
一个线程可以控制和操作同级线程里的其他线程,但是进程只能操作子进程。
5,交互
同一个进程里的线程之间可以直接访问。
两个进程想通信必须通过一个中间代理来实现。
相关推荐:《Python视频教程》
Num04–>几个常见的概念
1,什么的并发和并行?
并发:微观上CPU轮流执行,宏观上用户看到同时执行。因为cpu切换任务非常快。
并行:是指系统真正具有同时处理多个任务(动作)的能力。
2,同步、异步和轮询的区别?
同步任务:B一直等着A,等A完成之后,B再执行任务。(打电话案例)
轮询任务:B没有一直等待A,B过一会来问一下A,过一会问下A
异步任务:B不需要一直等着A, B先做其他事情,等A完成后A通知B。(发短信案例)
Num05–>进程和线程的优缺点比较
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。
多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)着名的Apache最早就是采用多进程模式。
多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。
在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。
Num06–>计算密集型任务和IO密集型任务
是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。
第一种:计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
第二种:任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
相关推荐:
Python中的进程是什么
C. 简述python进程,线程和协程的区别及应用场景
协程多与线程进行比较
1) 一个线程可以多个协程,一个进程也可以单独拥有多个协程,这样python中则能使用多核CPU。
2) 线程进程都是同步机制,而协程则是异步
3) 协程能保留上一次调用时的状态,每次过程重入时,就相当于进入上一次调用的状态
D. python多线程怎样同步
锁机制
�6�9�6�9threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁
import threading
import time
class Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock()
def add(self):
self.lock.acquire()#加锁,锁住相应的资源
self.num += 1
num = self.num
self.lock.release()#解锁,离开该资源
return num
n = Num()
class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item
def run(self):
time.sleep(2)
value = n.add()#将num加1,并输出原来的数据和+1之后的数据
print(self.item,value)
for item in range(5):
t = jdThread(item)
t.start()
t.join()#使线程一个一个执行
�6�9�6�9当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“同步阻塞”(参见多线程的基本概念)。
�6�9�6�9直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
信号量
�6�9�6�9信号量也提供acquire方法和release方法,每当调用acquire方法的时候,如果内部计数器大于0,则将其减1,如果内部计数器等于0,则会阻塞该线程,知道有线程调用了release方法将内部计数器更新到大于1位置。
import threading
import time
class Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3)
#允许最多三个线程同时访问资源
def add(self):
self.sem.acquire()#内部计数器减1
self.num += 1
num = self.num
self.sem.release()#内部计数器加1
return num
n = Num()
class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item
def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)
for item in range(100):
t = jdThread(item)
t.start()
t.join()
条件判断
�6�9�6�9所谓条件变量,即这种机制是在满足了特定的条件后,线程才可以访问相关的数据。
�6�9�6�9它使用Condition类来完成,由于它也可以像锁机制那样用,所以它也有acquire方法和release方法,而且它还有wait,notify,notifyAll方法。
"""
一个简单的生产消费者模型,通过条件变量的控制产品数量的增减,调用一次生产者产品就是+1,调用一次消费者产品就会-1.
"""
"""
使用 Condition 类来完成,由于它也可以像锁机制那样用,所以它也有 acquire 方法和 release 方法,而且它还有
wait, notify, notifyAll 方法。
"""
import threading
import queue,time,random
class Goods:#产品类
def __init__(self):
self.count = 0
def add(self,num = 1):
self.count += num
def sub(self):
if self.count>=0:
self.count -= 1
def empty(self):
return self.count <= 0
class Procer(threading.Thread):#生产者类
def __init__(self,condition,goods,sleeptime = 1):#sleeptime=1
threading.Thread.__init__(self)
self.cond = condition
self.goods = goods
self.sleeptime = sleeptime
def run(self):
cond = self.cond
goods = self.goods
while True:
cond.acquire()#锁住资源
goods.add()
print("产品数量:",goods.count,"生产者线程")
cond.notifyAll()#唤醒所有等待的线程--》其实就是唤醒消费者进程
cond.release()#解锁资源
time.sleep(self.sleeptime)
class Consumer(threading.Thread):#消费者类
def __init__(self,condition,goods,sleeptime = 2):#sleeptime=2
threading.Thread.__init__(self)
self.cond = condition
self.goods = goods
self.sleeptime = sleeptime
def run(self):
cond = self.cond
goods = self.goods
while True:
time.sleep(self.sleeptime)
cond.acquire()#锁住资源
while goods.empty():#如无产品则让线程等待
cond.wait()
goods.sub()
print("产品数量:",goods.count,"消费者线程")
cond.release()#解锁资源
g = Goods()
c = threading.Condition()
pro = Procer(c,g)
pro.start()
con = Consumer(c,g)
con.start()
同步队列
�6�9�6�9put方法和task_done方法,queue有一个未完成任务数量num,put依次num+1,task依次num-1.任务都完成时任务结束。
import threading
import queue
import time
import random
'''
1.创建一个 Queue.Queue() 的实例,然后使用数据对它进行填充。
2.将经过填充数据的实例传递给线程类,后者是通过继承 threading.Thread 的方式创建的。
3.每次从队列中取出一个项目,并使用该线程中的数据和 run 方法以执行相应的工作。
4.在完成这项工作之后,使用 queue.task_done() 函数向任务已经完成的队列发送一个信号。
5.对队列执行 join 操作,实际上意味着等到队列为空,再退出主程序。
'''
class jdThread(threading.Thread):
def __init__(self,index,queue):
threading.Thread.__init__(self)
self.index = index
self.queue = queue
def run(self):
while True:
time.sleep(1)
item = self.queue.get()
if item is None:
break
print("序号:",self.index,"任务",item,"完成")
self.queue.task_done()#task_done方法使得未完成的任务数量-1
q = queue.Queue(0)
'''
初始化函数接受一个数字来作为该队列的容量,如果传递的是
一个小于等于0的数,那么默认会认为该队列的容量是无限的.
'''
for i in range(2):
jdThread(i,q).start()#两个线程同时完成任务
for i in range(10):
q.put(i)#put方法使得未完成的任务数量+1
E. 在python中线程和协程的区别是什么
在python中线程和协程的区别:1、一个线程可以拥有多个协程,这样在python中就能使用多核CPU;2、线程是同步机制,而协程是异步;3、 协程能保留上一次调用时的状态,每次过程重入时,就相当于进入上一次调用的状态。
一、首先我们来了解一下线程和协程的概念
1、线程
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。线程间通信主要通过共享内存,上下文切换很快,资源开销较少,但相比进程不够稳定容易丢失数据。
2、协程
协程是一种用户态的轻量级线程,协程的调度完全由用户控制。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。
二、协程与线程的比较
1) 一个线程可以拥有多个协程,一个进程也可以单独拥有多个协程,这样python中则能使用多核CPU。
2) 线程进程都是同步机制,而协程则是异步。
3)协程能保留上一次调用时的状态,每次过程重入时,就相当于进入上一次调用的状态。
三、线程、协程在python中的使用
1、多线程一般是使用threading库,完成一些IO密集型并发操作。多线程的优势是切换快,资源消耗低,但一个线程挂掉则会影响到所有线程,所以不够稳定。现实中使用线程池的场景会比较多,具体可参考《python线程池实现》。
2、协程一般是使用gevent库,当然这个库用起来比较麻烦,所以使用的并不是很多。相反,协程在tornado的运用就多得多了,使用协程让tornado做到单线程异步,据说还能解决C10K的问题。所以协程使用的地方最多的是在web应用上。
总结一下:
IO密集型一般使用多线程或者多进程,CPU密集型一般使用多进程,强调非阻塞异步并发的一般都是使用协程,当然有时候也是需要多进程线程池结合的,或者是其他组合方式。
推荐课程:Python高级进阶视频教程
F. python 同步框架中使用线程池是否有意义
有
简单地说就是作为可能是仅有的支持多线程的解释型语言(perl的多线程是残疾,PHP没有多线程),Python的多线程是有compromise的,在任意时间只有一个Python解释器在解释Python bytecode。
如果你的代码是CPU密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有context switch
但是:如果你的代码是IO密集型,多线程可以明显提高效率。例如制作爬虫(我就不明白为什么Python总和爬虫联系在一起…不过也只想起来这个例子…),绝大多数时间爬虫是在等待socket返回数据。这个时候C代码里是有release GIL的,最终结果是某个线程等待IO的时候其他线程可以继续执行。
反过来讲:你就不应该用Python写CPU密集型的代码…效率摆在那里…
如果确实需要在CPU密集型的代码里用concurrent,就去用multiprocessing库。这个库是基于multi process实现了类multi thread的API接口,并且用pickle部分地实现了变量共享。
再加一条,如果你不知道你的代码到底算CPU密集型还是IO密集型,教你个方法:
multiprocessing这个mole有一个mmy的sub mole,它是基于multithread实现了multiprocessing的API。
G. 关于python多线程的一些问题。
创建的子线程默认是非守护的。
非守护:当主线程结束时,子线程继续运行,二者互不影响。
子线程是守护线程:当主线程结束时,子线程也结束(不管子线程工作有没有完成)。
join作用是线程同步,是让主线程等待子线程结束才结束(主线程完成工作了也不结束,阻塞等待,等子线程完成其工作才一起结束)。
相信此时你已经懂你的两个问题了。
没加join的时候主线程结束了,所以命令提示符>>>就出来了,可是子线程还没结束,过了3/5秒后打印了字符串。加了join后主线程等两个子线程都结束才一起结束,所以最后才出来>>>。
理解确实有点偏差。守护是指子线程守护着主线程,你死我也死,谓之守护。
H. 用Python中threading模块怎么实现线程间时钟同步
用一个全局变量来保存这个时钟。其实线程直接访问这个全局的变量来获取时钟信息。
I. python多线程的几种方法
Python进阶(二十六)-多线程实现同步的四种方式
临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区。
锁机制
threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock() def add(self):
self.lock.acquire()#加锁,锁住相应的资源
self.num += 1
num = self.num
self.lock.release()#解锁,离开该资源
return num
n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()#将num加1,并输出原来的数据和+1之后的数据
print(self.item,value)for item in range(5):
t = jdThread(item)
t.start()
t.join()#使线程一个一个执行
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“同步阻塞”(参见多线程的基本概念)。
直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
信号量
信号量也提供acquire方法和release方法,每当调用acquire方法的时候,如果内部计数器大于0,则将其减1,如果内部计数器等于0,则会阻塞该线程,知道有线程调用了release方法将内部计数器更新到大于1位置。
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3) #允许最多三个线程同时访问资源
def add(self):
self.sem.acquire()#内部计数器减1
self.num += 1
num = self.num
self.sem.release()#内部计数器加1
return num
n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)for item in range(100):