当前位置:首页 » 编程语言 » 命名实体识别python

命名实体识别python

发布时间: 2022-09-01 07:08:00

⑴ 如何用 python 中的 NLTK 对中文进行分析和处理

一、NLTK进行分词

用到的函数:

nltk.sent_tokenize(text) #对文本按照句子进行分割

nltk.word_tokenize(sent) #对句子进行分词

二、NLTK进行词性标注

用到的函数:

nltk.pos_tag(tokens)#tokens是句子分词后的结果,同样是句子级的标注

三、NLTK进行命名实体识别(NER)

用到的函数:

nltk.ne_chunk(tags)#tags是句子词性标注后的结果,同样是句子级

上例中,有两个命名实体,一个是Xi,这个应该是PER,被错误识别为GPE了; 另一个事China,被正确识别为GPE。

四、句法分析

nltk没有好的parser,推荐使用stanfordparser

但是nltk有很好的树类,该类用list实现

可以利用stanfordparser的输出构建一棵python的句法树

⑵ 目前常用的自然语言处理开源项目/开发包有哪些

中文主要有:NLTK,HanLP,Ansj,THULAC,结巴分词,FNLP,哈工大LTP,中科院ICTCLAS分词,GATE,SnowNLP,东北大学NiuTrans,NLPIR;英文主要有:NLTK,Genism,TextBlob,Stanford NLP,Spacy。英文的开源NLP工具主要参见StackoverFlow-java or python for nlp。HanLP:HanLP是由一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。开发语言:Java,网址:hankcs/HanLP,开发机构:大快公司,协议:Apache-2.0功能:非常多,主要有中文分词,词性标注,命名实体识别,关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析,文本分类:情感分析,word2vec,语料库工具。

⑶ 部分常用分词工具使用整理

以下分词工具均能在Python环境中直接调用(排名不分先后)。

1、jieba(结巴分词) 免费使用

2、HanLP(汉语言处理包) 免费使用

3、SnowNLP(中文的类库) 免费使用

4、FoolNLTK(中文处理工具包) 免费使用

5、Jiagu(甲骨NLP) 免费使用

6、pyltp(哈工大语言云) 商用需要付费

7、THULAC(清华中文词法分析工具包) 商用需要付费

8、NLPIR(汉语分词系统) 付费使用

1、jieba(结巴分词)

“结巴”中文分词:做最好的 Python 中文分词组件。

项目Github地址:jieba

安装

pip install jieba

使用

import jieba

jieba.initialize()

text = '化妆和服装'

words = jieba.cut(text)

words = list(words)

print(words)

2、HanLP(汉语言处理包)

HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。

项目Github地址:pyhanlp

安装:

pip install pyhanlp

使用

import pyhanlp

text = '化妆和服装'

words = []

for term in pyhanlp.HanLP.segment(text):

words.append(term.word)

print(words)

3、SnowNLP(中文的类库)

SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。

项目Github地址:snownlp

安装:

pip install snownlp

使用:

import snownlp

text = '化妆和服装'

words = snownlp.SnowNLP(text).words

print(words)

4、FoolNLTK(中文处理工具包)

可能不是最快的开源中文分词,但很可能是最准的开源中文分词。

项目Github地址:FoolNLTK

安装:

pip install foolnltk

使用:

import fool

text = '化妆和服装'

words = fool.cut(text)

print(words)

5、Jiagu(甲骨NLP)

基于BiLSTM模型,使用大规模语料训练而成。将提供中文分词、词性标注、命名实体识别、关键词抽取、文本摘要、新词发现等常用自然语言处理功能。参考了各大工具优缺点制作,将Jiagu回馈给大家。

项目Github地址:jiagu

安装:

pip3 install jiagu

使用:

import jiagu

jiagu.init()

text = '化妆和服装'

words = jiagu.seg(text)

print(words)

6、pyltp(哈工大语言云)

pyltp 是 LTP 的 Python 封装,提供了分词,词性标注,命名实体识别,依存句法分析,语义角色标注的功能。

项目Github地址:pyltp,3.4模型下载链接:网盘

安装:

pip install pyltp

使用:

import pyltp

segmentor = pyltp.Segmentor()

segmentor.load('model/ltp_data_v3.4.0/cws.model') # 模型放置的路径

text = '化妆和服装'

words = segmentor.segment(text)

words = list(words)

print(words)

7、THULAC(清华中文词法分析工具包)

THULAC(THU Lexical Analyzer for Chinese)由清华大学自然语言处理与 社会 人文计算实验室研制推出的一套中文词法分析工具包,具有中文分词和词性标注功能。

项目Github地址:THULAC-Python

安装:

pip install thulac

使用:

import thulac

thu = thulac.thulac(seg_only=True)

text = '化妆和服装'

words = thu.cut(text, text=True).split()

print(words)

NLPIR(汉语分词系统)

主要功能包括中文分词;英文分词;词性标注;命名实体识别;新词识别;关键词提取;支持用户专业词典与微博分析。NLPIR系统支持多种编码、多种操作系统、多种开发语言与平台。

项目Github地址:pynlpir

安装:

pip install pynlpir

下载证书覆盖到安装目录,NLPIR.user 例如安装目录:/usr/lib64/python3.4/site-packages/pynlpir/Data

使用

import pynlpir

pynlpir.open()

text = '化妆和服装'

words = pynlpir.segment(text, pos_tagging=False)

print(words)

pynlpir.close()

⑷ python 能调用fudannlp吗

有很多好用的中文处理包: Jieba:可以用来做分词,词性标注,TextRank HanLP:分词,命名实体识别,依存句法分析,还有FudanNLP,NLPIR 个人觉得都比NLTK好用~

⑸ hanlp可以使用python调用吗

安装JDK

JPype并没有像IKVM那样实现自己的JVM,而是以pipe方式调用原生JVM。所以我们需要一个JVM,比如:

Oracle JDK

OpenJDK

安装JDK非常简单,分清楚32位和64位即可,必须与OS和Python的位数一致,具体安装过程不再赘述。

唯一需要注意的是,必须设置环境变量JAVA_HOME到JDK的根目录,JDK的安装程序不一定会帮你做这一步。

安装编译工具链

Python的package一般是以源码形式发布的,其中一些C代码必须在用户机器上编译,所以需要安装编译工具链。当然你也可以跳过这步,直接下载binary。

Windows

安装免费的Visual C++ Express 2010。

Debian/Ubuntu
sudo apt-get install g++

Red Hat/Fedora
su -c 'yum install gcc-c++'

安装JPype

本文读者应该都是Python程序员,所以略过了安装Python这一步。不过必须注意的是,JPype版本与Python的对应兼容关系:

Python2.x:JPype

Python3.x:JPype1-py3

使用setup.py安装

下载源码后解压,在目录下运行:

*nix
sudo python3 setup.py install

Windows
python setup.py install

直接下载binary

当然你也可以选择下载binary,比如JPype1-py3主页上的binary列表。

在Pycharm中安装

如果你正在使用Pycharm这款IDE的话,那么事情就简单多了。

首先在Project Interpreter里面点击加号:

搜索JPype,选择你需要的版本安装:

稍等片刻就安装成功了:

测试安装结果

终于又到了写代码的开心时间了,可以通过如下代码测试是否安装成功:
from jpype import *startJVM(getDefaultJVMPath())java.lang.System.out.println("hello world")shutdownJVM()

输出如下结果表示安装成功:
hello worldJVM activity report : classes loaded : 31JVM has been shutdown

调用HanLP

关于HanLP

HanLP是
一个致力于向生产环境普及NLP技术的开源Java工具包,支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义词典、词性标注),命名实体
识别(中国人名、音译人名、日本人名、地名、实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析
(MaxEnt依存句法分析、神经网络依存句法分析)。

下载HanLP

你可以直接下载Portable版的jar,零配置。

也可以使用自定义的HanLP——HanLP由3部分组成:类库hanlp.jar包、模型data包、配置文件hanlp.properties,请前往项目主页下载最新版:https://github.com/hankcs/HanLP/releases。对于非portable版,下载后,你需要编辑配置文件第一行的root指向data的父目录,详见文档。

这里,假设新建了一个目录(假定为C:\hanlp),把hanlp.jar和hanlp.properties(portable版的话,仅需一个hanlp-portable.jar)放进去:

Python调用

下面是一份Python3的调用示例:
# -*- coding:utf-8 -*-
# Filename: main.py
# Author:hankcs
# Date: 2015/11/26 14:16
from jpype import *

startJVM(getDefaultJVMPath(), "-Djava.class.path=C:\hanlp\hanlp-1.2.8.jar;C:\hanlp", "-Xms1g", "-Xmx1g")
HanLP = JClass('com.hankcs.hanlp.HanLP')
# 中文分词
print(HanLP.segment('你好,欢迎在Python中调用HanLP的API'))
testCases = [
"商品和服务",
"结婚的和尚未结婚的确实在干扰分词啊",
"买水果然后来世博园最后去世博会",
"中国的首都是北京",
"欢迎新老师生前来就餐",
"工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作",
"随着页游兴起到现在的页游繁盛,依赖于存档进行逻辑判断的设计减少了,但这块也不能完全忽略掉。"]
for sentence in testCases: print(HanLP.segment(sentence))
# 命名实体识别与词性标注
NLPTokenizer = JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer')
print(NLPTokenizer.segment('中国科学院计算技术研究所的宗成庆教授正在教授自然语言处理课程'))
# 关键词提取
document = "水利部水资源司司长陈明忠9月29日在国务院新闻办举行的新闻发布会上透露," \
"根据刚刚完成了水资源管理制度的考核,有部分省接近了红线的指标," \
"有部分省超过红线的指标。对一些超过红线的地方,陈明忠表示,对一些取用水项目进行区域的限批," \
"严格地进行水资源论证和取水许可的批准。"
print(HanLP.extractKeyword(document, 2))
# 自动摘要
print(HanLP.extractSummary(document, 3))
# 依存句法分析
print(HanLP.parseDependency("徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。"))
shutdownJVM()

⑹ python 命名实体识别怎么计算准确率 召回率

目前算法方面主流就是CRF了
效率一般
2类(不包括非专名)
几W
query/s
4类
就下降到1W-2W
query/s了
更多类别的就更少了
当然这个是优化过的crf++了
而且命名实体识别
算法不是对所有类别的都合适
比如音乐和电影
CRF的效果就不好
但是人名
地名
机构名还不错
所以工程上即使用CRF
也会使用词典+消歧的策略

⑺ 如何建立一个深度学习系统

Programming Libraries 编程库资源
我是一个“学习要敢于冒险和尝试”观念的倡导者。这是我学习编程的方式,我相信很多人也是这样学习程序设计的。先了解你的能力极限,然后去拓展你的能力。如果你了解如何编程,可以将编程经验很快借鉴到深入学习机器学习上。在你实现一个实际的产品系统之前,你必须遵循一些规则、学习相关数学知识。
找到一个库并且仔细阅读相关文档,根据教程,开始尝试实现一些东西。下面列出的是开源的机器学习库中最好的几种。我认为,并不是他们中的每一种都适合用在你的系统中,但是他们是你学习、探索和实验的好材料。
你可以从一个由你熟悉的语言编写的库开始学习,然后再去学习其他功能强大的库。如果你是一个优秀的程序员,你会知道怎样从一种语言,简单合理地迁移到另一种语言。语言的逻辑都是相同的,只是语法和API稍有不同。
R Project for Statistical Computing:这是一个开发环境,采用一种近似于Lisp的脚本语言。在这个库中,所有你想要的与统计相关的功能都通过R语言提供,包括一些复杂的图标。CRAN(你可以认为是机器学弟的第三方包)中的机器学习目录下的代码,是由统计技术方法和其他相关领域中的领军人物编写的。如果你想做实验,或是快速拓展知识,R语言都是必须学习的。但它可能不是你学习的第一站。
WEKA:这是一个数据挖掘工作平台,为用户提供数一系列据挖掘全过程的API、命令行和图形化用户接口。你可以准备数据、可视化、建立分类、进行回归分析、建立聚类模型,同时可以通过第三方插件执行其他算法。
Mahout是Hadoop中为机器学习提供的一个很好的JAVA框架,你可以自行学习。如果你是机器学习和大数据学习的新手,那么坚持学习WEKA,并且全心全意地学习一个库。
Scikit Learn:这是用Python编写的,基于NumPy和SciPy的机器学习库。如果你是一个Python或者Ruby语言程序员,这是适合你用的。这个库很用户接口友好,功能强大,并且配有详细的文档说明。如果你想试试别的库,你可以选择Orange。
Octave:如果你很熟悉MatLab,或者你是寻求改变的NumPy程序员,你可以考虑 Octave。这是一个数值计算环境,与MatLab像是,借助Octave你可以很方便地解决线性和非线性问题,比如机器学习算法底层涉及的问题。如果你有工程背景,那么你可以由此入手。
BigML:可能你并不想进行编程工作。你完全可以不通过代码,来使用 WEKA那样的工具。你通过使用BigMLS的服务来进行更加深入的工作。BigML通过Web页面,提供了机器学习的接口,因此你可以通过浏览器来建立模型。
补充:
NLTK NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning.LingPipe: 是一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能,包括主题分类(Top Classification)、命名实体识别(Named Entity Recognition)、词性标注(Part-of Speech Tagging)、句题检测(Sentence Detection)、查询拼写检查(Query Spell Checking)、兴趣短语检测(Interseting Phrase Detection)、聚类(Clustering)、字符语言建模(Character Language Modeling)、医学文献下载/解析/索引(MEDLINE Download, Parsing and Indexing)、数据库文本挖掘(Database Text Mining)、中文分词(Chinese Word Segmentation)、情感分析(Sentiment Analysis)、语言辨别(Language Identification)等API。

挑选出一个平台,并且在你实际学习机器学习的时候使用它。不要纸上谈兵,要去实践!
Video Courses视频课程
很多人都是通过视频资源开始接触机器学习的。我在YouTube和VideoLectures上看了很多于机器学习相关的视频资源。这样做的问题是,你可能只是观看视频而并不实际去做。我的建议是,你在观看视频的时候,应该多记笔记,及时后来你会抛弃你的笔记。同时,我建议你将学到的东西付诸实践。
坦白讲,我没有看见特别合适初学者的视频资源。视频资源都需要你掌握一定的线性代数、概率论等知识。Andrew Ng在斯坦福的讲解可能是最适合初学者的,下面是我推荐的一些视频资源。
Stanford Machine Learning斯坦福的机器学习课程:可以在Coursera上观看,这门课是由 Andrew Ng讲解的。只要注册,你可以随时观看所有的课程视频,从Stanford CS229 course下载讲义和笔记。这门课包括了家庭作业和小测试,课程主要讲解了线性代数的知识,使用Octave库。
Caltech Learning from Data加利福尼亚理工学院的数据分析课程:你可以在edX上学习这门课程,课程是由Yaser Abu-Mostafa讲解的。所有的课程视频和资料都在加利福尼亚理工学院的网站上。与斯坦福的课程类似,你可以根据自己的情况安排学习进度,完成家庭作业和小论文。它与斯坦福的课程主题相似,关注更多的细节和数学知识。对于初学者来说,家庭作业可能稍有难度。
Machine Learning Category on VideoLectures.Net网站中的机器学习目录:这是个很容易令人眼花缭乱的资源库。你可以找出比较感兴趣的资源,并且深入学习。不要纠结于不适合你的视频,或者对于感兴趣的内容你可以做笔记。我自己会一直重复深入学习一些问题,同时发现新的话题进行学习。此外,在这个网站上你可以发现是这个领域的大师是什么样的。
“Getting In Shape For The Sport Of Data Science” – 由Jeremy Howard讲授:这是与机器学习竞赛者的对话,他们是一些实践中的R语言用户。这是非常珍贵的资源,因为很少有人会讨论研究一个问题的完整过程和究竟怎样做。我曾经幻想过在网上找到一个TV秀,记录机器学习竞赛的全过程。这就是我开始学习机器学习的经历!
Overview Papers综述论文
如果你并不习惯阅读科研论文,你会发现论文的语言非常晦涩难懂。一篇论文就像是一本教科书的片段,但是论文会介绍一个实验或者是领域中其他的前沿知识。然而,如果你准备从阅读论文开始学习机器学习的话,你还是可以找到一些很有意思的文章的。
The Discipline of Machine Learning机器学习中的规则:这是由Tom Mitchell编着的白皮书,其中定义了机器学习的规则。Mitchell在说服CMU总裁为一个百年内都存在的问题建立一个独立的机器学习部门时,也用到了这本书中的观点。
A Few Useful Things to Know about Machine Learning:这是一篇很好的论文,因为它以详细的算法为基础,又提出了一些很重要的问题,比如:选择特征的一般化,模型简化等。
我只是列出了两篇重要的论文,因为阅读论文会让你陷入困境。
Beginner Machine Learning Books给机器学习初学者的书
关于机器学习的书有很多,但是几乎没有为初学者量身定做的。什么样的人才是初学者呢?最有可能的情况是,你从另外一个完全不同的领域比如:计算机科学、程序设计或者是统计学,来到机器学习领域。那么,大部分的书籍要求你有一定的线性代数和概率论的基础。
但是,还有一些书通过讲解最少的算法来鼓励程序员学习机器学习,书中会介绍一些可以使用工具、编程函数库来让程序员尝试。其中最有代表性的书是:《Programming Collective Intelligence》,《Machine Learning for Hackers》,《Hackersand Data Mining: Practical Machine Learning Tools and Techniques》(Python版, R版, 以及Java版)。如果感到迷惑的话,你可以选择其中一本开始学习。
Programming Collective Intelligence: Building Smart Web 2.0 Applications:这本书是为程序员写的。书中简略介绍相关理论,重点以程序为例,介绍web中的实际问题和解决办法。你可以买来这本书,阅读,并且做一些练习。
Machine Learning for Hackers (中文版:机器学习:实用案例解析 ):我建议你在阅读了《Programming Collective Intelligence》一书之后,再阅读这本书。这本书中也提供了很多实践练习,但是涉及更多的数据分析,并且使用R语言。我个人很喜欢这本书!
Machine Learning: An Algorithmic Perspective:这本书是《Programming Collective Intelligence》的高级版本。它们目的相同(让程序员开始了解机器学习),但是这本书包括一些数学知识,参考样例和phython程序片段。如果你有兴趣的话,我建议你在看完《Programming Collective Intelligence》之后来阅读这本书。
数据挖掘:实用机器学习工具与技术(英文版·第3版) :我自己是从这本书开始了解机器学习的,那时是2000年这本书还是第一版。我那时是Java程序员,这本书和WEKA库为我的学习和实践提供了一个很好的环境。我通过这样的平台和一些插件,实现我的算法,并且真正开始实践机器学习和数据挖掘的过程。我强烈推荐这本书,和这样的学习过程。
Machine Learning(中文版:计算机科学丛书:机器学习 ):这是一本很老的书,包括了一些规则和很多参考资料。这是一本教科书,为每个算法提供了相关讲解。
有一些人认为那些经典的机器学习教科书很了不起。 我也赞同,那些书的确非常好。但是,我认为,对于初学者来说,这些书可能并不合适。
Further Reading 继续阅读
在写这篇文章时,我认真思考了相关问题,同时也参考了其他人推荐的资料,以确保我没有遗漏任何重要参考资料。为了确保文章的完整性,下面也列出了一些网上流行的,可以供初学者使用的材料。.
A List of Data Science and Machine Learning Resources:这是一份仔细整理的列表。你可以花一些时间,点击链接,仔细阅读作者的建议。值得一读!
What are some good resources for learning about machine learning Why:这个问题的第一个答案令人吃惊。每次我阅读这篇文章的时候,都会做好笔记,并且插入新的书签。答案中对我最有启发的部分是机器学习课程列表,以及相应的课程笔记和问答网站。
Overwhelmed by Machine Learning: is there an ML101 book:这是StackOverflow上的问题。并且提供了一系列机器学习推荐书籍。Jeff Moser提供的第一个答案是很有用的,其中有课程视频和讲座的链接。

⑻ 什么是BP神经网络

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

热点内容
照片压缩包 发布:2025-01-16 04:56:56 浏览:742
手机存储用到多少最好 发布:2025-01-16 04:56:19 浏览:781
ftp站点不能启动 发布:2025-01-16 04:55:31 浏览:54
pythonip合法性 发布:2025-01-16 04:48:52 浏览:75
锂电池用3a的充电器是什么配置 发布:2025-01-16 04:26:43 浏览:35
好配置为什么感觉打联盟不流畅 发布:2025-01-16 04:23:02 浏览:900
我的世界java编辑服务器信息 发布:2025-01-16 04:21:42 浏览:507
android拨号上网 发布:2025-01-16 04:13:25 浏览:97
安卓网络编程怎么用 发布:2025-01-16 03:04:45 浏览:899
湖南it服务器怎么样 发布:2025-01-16 03:01:01 浏览:248