当前位置:首页 » 编程语言 » dftc语言

dftc语言

发布时间: 2022-08-30 00:04:21

❶ 基于FFT的算法优化 要c语言完整程序(利用旋转因子的性质),有的请留言,答谢!!!(有核心代码,望指教

实现(C描述)

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

//#include "complex.h"

// --------------------------------------------------------------------------

#define N 8 //64

#define M 3 //6 //2^m=N

#define PI 3.1415926

// --------------------------------------------------------------------------

float twiddle[N/2] = {1.0, 0.707, 0.0, -0.707};

float x_r[N] = {1, 1, 1, 1, 0, 0, 0, 0};

float x_i[N]; //N=8

/*

float twiddle[N/2] = {1, 0.9951, 0.9808, 0.9570, 0.9239, 0.8820, 0.8317, 0.7733,

0.7075, 0.6349, 0.5561, 0.4721, 0.3835, 0.2912, 0.1961, 0.0991,

0.0000,-0.0991,-0.1961,-0.2912,-0.3835,-0.4721,-0.5561,-0.6349,

-0.7075,-0.7733, 0.8317,-0.8820,-0.9239,-0.9570,-0.9808,-0.9951}; //N=64

float x_r[N]={1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,};

float x_i[N];

*/

FILE *fp;

// ----------------------------------- func -----------------------------------

/**

* 初始化输出虚部

*/

static void fft_init( void )

{

int i;

for(i=0; i<N; i++) x_i[i] = 0.0;

}

/**

* 反转算法.将时域信号重新排序.

* 这个算法有改进的空间

*/

static void bitrev( void )

{

int p=1, q, i;

int bit_rev[ N ]; //

float xx_r[ N ]; //

bit_rev[ 0 ] = 0;

while( p < N )

{

for(q=0; q<p; q++)

{

bit_rev[ q ] = bit_rev[ q ] * 2;

bit_rev[ q + p ] = bit_rev[ q ] + 1;

}

p *= 2;

}

for(i=0; i<N; i++) xx_r[ i ] = x_r[ i ];

for(i=0; i<N; i++) x_r[i] = xx_r[ bit_rev[i] ];

}

/* ------------ add by sshc625 ------------ */

static void bitrev2( void )

{

return ;

}

/* */

void display( void )

{

printf("\n\n");

int i;

for(i=0; i<N; i++)

printf("%f\t%f\n", x_r[i], x_i[i]);

}

/**

*

*/

void fft1( void )

{ fp = fopen("log1.txt", "a+");

int L, i, b, j, p, k, tx1, tx2;

float TR, TI, temp; // 临时变量

float tw1, tw2;

/* 深M. 对层进行循环. L为当前层, 总层数为M. */

for(L=1; L<=M; L++)

{

fprintf(fp,"----------Layer=%d----------\n", L);

/* b的意义非常重大,b表示当前层的颗粒具有的输入样本点数 */

b = 1;

i = L - 1;

while(i > 0)

{

b *= 2;

i--;

}

// -------------- 是否外层对颗粒循环, 内层对样本点循环逻辑性更强一些呢! --------------

/*

* outter对参与DFT的样本点进行循环

* L=1, 循环了1次(4个颗粒, 每个颗粒2个样本点)

* L=2, 循环了2次(2个颗粒, 每个颗粒4个样本点)

* L=3, 循环了4次(1个颗粒, 每个颗粒8个样本点)

*/

for(j=0; j<b; j++)

{

/* 求旋转因子tw1 */

p = 1;

i = M - L; // M是为总层数, L为当前层.

while(i > 0)

{

p = p*2;

i--;

}

p = p * j;

tx1 = p % N;

tx2 = tx1 + 3*N/4;

tx2 = tx2 % N;

// tw1是cos部分, 实部; tw2是sin部分, 虚数部分.

tw1 = ( tx1>=N/2)? -twiddle[tx1-N/2] : twiddle[ tx1 ];

tw2 = ( tx2>=N/2)? -twiddle[tx2-(N/2)] : twiddle[tx2];

/*

* inner对颗粒进行循环

* L=1, 循环了4次(4个颗粒, 每个颗粒2个输入)

* L=2, 循环了2次(2个颗粒, 每个颗粒4个输入)

* L=3, 循环了1次(1个颗粒, 每个颗粒8个输入)

*/

for(k=j; k<N; k=k+2*b)

{

TR = x_r[k]; // TR就是A, x_r[k+b]就是B.

TI = x_i[k];

temp = x_r[k+b];

/*

* 如果复习一下 (a+j*b)(c+j*d)两个复数相乘后的实部虚部分别是什么

* 就能理解为什么会如下运算了, 只有在L=1时候输入才是实数, 之后层的

* 输入都是复数, 为了让所有的层的输入都是复数, 我们只好让L=1时候的

* 输入虚部为0

* x_i[k+b]*tw2是两个虚数相乘

*/

fprintf(fp, "tw1=%f, tw2=%f\n", tw1, tw2);

x_r[k] = TR + x_r[k+b]*tw1 + x_i[k+b]*tw2;

x_i[k] = TI - x_r[k+b]*tw2 + x_i[k+b]*tw1;

x_r[k+b] = TR - x_r[k+b]*tw1 - x_i[k+b]*tw2;

x_i[k+b] = TI + temp*tw2 - x_i[k+b]*tw1;

fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k, x_r[k], x_i[k]);

fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k+b, x_r[k+b], x_i[k+b]);

} //

} //

} //

}

/**

* ------------ add by sshc625 ------------

* 该实现的流程为

* for( Layer )

* for( Granule )

* for( Sample )

*

*

*

*

*/

void fft2( void )

{ fp = fopen("log2.txt", "a+");

int cur_layer, gr_num, i, k, p;

float tmp_real, tmp_imag, temp; // 临时变量, 记录实部

float tw1, tw2;// 旋转因子,tw1为旋转因子的实部cos部分, tw2为旋转因子的虚部sin部分.

int step; // 步进

int sample_num; // 颗粒的样本总数(各层不同, 因为各层颗粒的输入不同)

/* 对层循环 */

for(cur_layer=1; cur_layer<=M; cur_layer++)

{

/* 求当前层拥有多少个颗粒(gr_num) */

gr_num = 1;

i = M - cur_layer;

while(i > 0)

{

i--;

gr_num *= 2;

}

/* 每个颗粒的输入样本数N' */

sample_num = (int)pow(2, cur_layer);

/* 步进. 步进是N'/2 */

step = sample_num/2;

/* */

k = 0;

/* 对颗粒进行循环 */

for(i=0; i<gr_num; i++)

{

/*

* 对样本点进行循环, 注意上限和步进

*/

for(p=0; p<sample_num/2; p++)

{

// 旋转因子, 需要优化...

tw1 = cos(2*PI*p/pow(2, cur_layer));

tw2 = -sin(2*PI*p/pow(2, cur_layer));

tmp_real = x_r[k+p];

tmp_imag = x_i[k+p];

temp = x_r[k+p+step];

/*(tw1+jtw2)(x_r[k]+jx_i[k])

*

* real : tw1*x_r[k] - tw2*x_i[k]

* imag : tw1*x_i[k] + tw2*x_r[k]

* 我想不抽象出一个

* typedef struct {

* double real; // 实部

* double imag; // 虚部

* } complex; 以及针对complex的操作

* 来简化复数运算是否是因为效率上的考虑!

*/

/* 蝶形算法 */

x_r[k+p] = tmp_real + ( tw1*x_r[k+p+step] - tw2*x_i[k+p+step] );

x_i[k+p] = tmp_imag + ( tw2*x_r[k+p+step] + tw1*x_i[k+p+step] );

/* X[k] = A(k)+WB(k)

* X[k+N/2] = A(k)-WB(k) 的性质可以优化这里*/

// 旋转因子, 需要优化...

tw1 = cos(2*PI*(p+step)/pow(2, cur_layer));

tw2 = -sin(2*PI*(p+step)/pow(2, cur_layer));

x_r[k+p+step] = tmp_real + ( tw1*temp - tw2*x_i[k+p+step] );

x_i[k+p+step] = tmp_imag + ( tw2*temp + tw1*x_i[k+p+step] );

printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p, x_r[k+p], x_i[k+p]);

printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p+step, x_r[k+p+step], x_i[k+p+step]);

}

/* 开跳!:) */

k += 2*step;

}

}

}

/*

* 后记:

* 究竟是颗粒在外层循环还是样本输入在外层, 好象也差不多, 复杂度完全一样.

* 但以我资质愚钝花费了不少时间才弄明白这数十行代码.

* 从中我发现一个于我非常有帮助的教训, 很久以前我写过一部分算法, 其中绝大多数都是递归.

* 将数据量减少, 减少再减少, 用归纳的方式来找出数据量加大代码的规律

* 比如FFT

* 1. 先写死LayerI的代码; 然后再把LayerI的输出作为LayerII的输入, 又写死代码; ......

* 大约3层就可以统计出规律来. 这和递归也是一样, 先写死一两层, 自然就出来了!

* 2. 有的功能可以写伪代码, 不急于求出结果, 降低复杂性, 把逻辑结果定出来后再添加.

* 比如旋转因子就可以写死, 就写1.0. 流程出来后再写旋转因子.

* 寥寥数语, 我可真是流了不少汗! Happy!

*/

void dft( void )

{

int i, n, k, tx1, tx2;

float tw1,tw2;

float xx_r[N],xx_i[N];

/*

* clear any data in Real and Imaginary result arrays prior to DFT

*/

for(k=0; k<=N-1; k++)

xx_r[k] = xx_i[k] = x_i[k] = 0.0;

// caculate the DFT

for(k=0; k<=(N-1); k++)

{

for(n=0; n<=(N-1); n++)

{

tx1 = (n*k);

tx2 = tx1+(3*N)/4;

tx1 = tx1%(N);

tx2 = tx2%(N);

if(tx1 >= (N/2))

tw1 = -twiddle[tx1-(N/2)];

else

tw1 = twiddle[tx1];

if(tx2 >= (N/2))

tw2 = -twiddle[tx2-(N/2)];

else

tw2 = twiddle[tx2];

xx_r[k] = xx_r[k]+x_r[n]*tw1;

xx_i[k] = xx_i[k]+x_r[n]*tw2;

}

xx_i[k] = -xx_i[k];

}

// display

for(i=0; i<N; i++)

printf("%f\t%f\n", xx_r[i], xx_i[i]);

}

// ---------------------------------------------------------------------------

int main( void )

{

fft_init( );

bitrev( );

// bitrev2( );

//fft1( );

fft2( );

display( );

system( "pause" );

// dft();

return 1;

}

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/sshcx/archive/2007/06/14/1651616.aspx

❷ C语言 基本问题

1.typedef能通过已有类型定义新的类型。它的语法形式和变量声明一致(区别仅在于显式前置typedef关键字和语义),声明后的类型可以用来直接声明该类型的变量。
typedef struct{
char dm[5];
int sl;
}PRO;

PRO sell[200];
PRO cell;
这里声明了类型struct {
char dm[5];
int sl;
}(注意,以上整个字符段才表示一个类型,最后没有分号)。
为了方便声明变量起见,用了typedef把上面的类型声明简化为PRO。
如果不用typedef,也可以这样:
struct{
char dm[5];
int sl;
}sell[200],cell;(注意结尾的变量名称和分号,包含了sell[200],cell这些变量名,整段字符是一个完整的声明),但明显比用PRO声明得复杂了许多,而且除非把类型声明完整地再照抄一编否则不能用它声明其它变量,可见typedef的优势。
用结构体类型名称也可以做到这一点:
struct PRO
{
char dm[5];
int sl;
}sell[200];
struct PRO cell;
不过需要注意struct不可省略,在这里struct PRO是一个类型,而PRO不是(在C++中则可以省略,编译器默认会在编译过程中自动加上struct处理)。虽然看起来差不多,不过在C语言中对于频繁用到(struct PRO*)强制转换之类的场合,用typedef可以少写许多“struct”,更简洁一些。
2.cell=sell[i];可行,原因如下:
1).运算符“=”在此处有定义(C语言内置运算符“=”可以对同类型的结构体变量间直接赋值);
2).左边是一个左值(而不是常量或者编译期临时变量);
3).左右类型相同,都是PRO(对于基本类型编译器可以进行隐式强制转换,类型不同也没关系,最多编译警告;但对于诸如两个不同类型的结构体或指针之类编译器就不知道怎么处理了,需要显式强制转换才有可能通过编译)。
如果觉得比较难理解,可以先把类型代换为基本类型。就像
int a=0,b[3]={1};
a=b[0];
一样,它是可行的。原因是数组本身的语义特性——数组中每个元素的类型被定义为它的基类型。
至于LZ说的
PRO cell[10];
cell[0]=sell[i];
也是可行的,原因同上,通过LZ的声明可以看到cell[0]和sell[i]的类型相同,左边是变量。
但这样声明后cell=sell[i]是非法的,因为cell是PRO*型地址常量,而sell[i]是PRO型变量。
关键在于,这里声明不同。赋值的合法性需要关注两端标识符的类型,因此需要明确声明的具体细节。
----
[原创回答团]

❸ 二阶滤波器用C语言怎么写

这个可比你想象的复杂多了,s是个复变量,1/(s+1)极点在-1,要想用C语言写,必须理解清楚下面几个问题:
1、输入必须是个有限序列,比如(x+yi),x和y分别是两个长度为N的数组
2、要过滤的频率,必须是个整型值,或者是个整型区间
3、输出结果同样是两个长度为N的数组(p+qi)
4、整个程序需要使用最基本的复数运算,这一点C语言本身不提供,必须手工写复函数运算库
5、实现的时候具体算法还需要编,这里才是你问题的核心。

我可以送你一段FFT的程序,自己琢磨吧,和MATLAB的概念差别很大:
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#include "complex.h"

extern "C" {

// Discrete Fourier Transform (Basic Version, Without Any Enhancement)
// return - Without Special Meaning, constantly, zero
int DFT (long count, CComplex * input, CComplex * output)
{
assert(count);
assert(input);
assert(output);

CComplex F, X, T, W; int n, i;

long N = abs(count); long Inversing = count < 0? 1: -1;

for(n = 0; n < N ; n++){ // compute from line 0 to N-1

F = CComplex(0.0f, 0.0f); // clear a line

for(i = 0; i < N; i++) {

T = input[i];

W = HarmonicPI2(Inversing * n * i, N);

X = T * W;

F += X; // fininshing a line

}//next i

// save data to outpus
memcpy(output + n, &F, sizeof(F));

}//next n

return 0;
}//end DFT

int fft (long count, CComplex * input, CComplex * output)
{
assert(count);
assert(input);
assert(output);

int N = abs(count); long Inversing = count < 0? -1: 1;

if (N % 2 || N < 5) return DFT(count, input, output);

long N2 = N / 2;

CComplex * iEven = new CComplex[N2]; memset(iEven, 0, sizeof(CComplex) * N2);
CComplex * oEven = new CComplex[N2]; memset(oEven, 0, sizeof(CComplex) * N2);
CComplex * iOdd = new CComplex[N2]; memset(iOdd , 0, sizeof(CComplex) * N2);
CComplex * oOdd = new CComplex[N2]; memset(oOdd , 0, sizeof(CComplex) * N2);

int i = 0; CComplex W;
for(i = 0; i < N2; i++) {
iEven[i] = input[i * 2];
iOdd [i] = input[i * 2 + 1];
}//next i

fft(N2 * Inversing, iEven, oEven);
fft(N2 * Inversing, iOdd, oOdd );

for(i = 0; i < N2; i++) {
W = HarmonicPI2(Inversing * (- i), N);
output[i] = oEven[i] + W * oOdd[i];
output[i + N2] = oEven[i] - W * oOdd[i];
}//next i
return 0;
}//end FFT

void __stdcall FFT(
long N, // Serial Length, N > 0 for DFT, N < 0 for iDFT - inversed Discrete Fourier Transform
double * inputReal, double * inputImaginary, // inputs
double * AmplitudeFrequences, double * PhaseFrequences) // outputs
{
if (N == 0) return;
if (!inputReal && !inputImaginary) return;
short n = abs(N);
CComplex * input = new CComplex[n]; memset(input, 0, sizeof(CComplex) * n);
CComplex * output= new CComplex[n]; memset(output,0, sizeof(CComplex) * n);
double rl = 0.0f, im = 0.0f; int i = 0;
for (i = 0; i < n; i++) {
rl = 0.0f; im = 0.0f;
if (inputReal) rl = inputReal[i];
if (inputImaginary) im = inputImaginary[i];
input[i] = CComplex(rl, im);
}//next i
int f = fft(N, input, output);

double factor = n;
//factor = sqrt(factor);

if (N > 0)
factor = 1.0f;
else
factor = 1.0f / factor;
//end if

for (i = 0; i < n; i++) {
if (AmplitudeFrequences) AmplitudeFrequences[i] = output[i].getReal() * factor;
if (PhaseFrequences) PhaseFrequences[i] = output[i].getImaginary() * factor;
}//next i
delete [] output;
delete [] input;
return ;
}//end FFT

int __cdecl main(int argc, char * argv[])
{
fprintf(stderr, "%s usage:\n", argv[0]);
fprintf(stderr, "Public Declare Sub FFT Lib \"wfft.exe\" \
(ByVal N As Long, ByRef inputReal As Double, ByRef inputImaginary As Double, \
ByRef freqAmplitude As Double, ByRef freqPhase As Double)");
return 0;
}//end main

};//end extern "C"

❹ 求FFT的c语言程序

快速傅里叶变换 要用C++ 才行吧 你可以用MATLAB来实现更方便点啊

此FFT 是用VC6.0编写,由FFT.CPP;STDAFX.H和STDAFX.CPP三个文件组成,编译成功。程序可以用文件输入和输出为文件。文件格式为TXT文件。测试结果如下:

输入文件:8.TXT 或手动输入

8 //N

1

2

3

4

5

6

7

8

输出结果为:或保存为TXT文件。(8OUT.TXT)

8

(36,0)

(-4,9.65685)

(-4,4)

(-4,1.65685)

(-4,0)

(-4,-1.65685)

(-4,-4)

(-4,-9.65685)

下面为FFT.CPP文件:

// FFT.cpp : 定义控制台应用程序的入口点。

#include "stdafx.h"

#include <iostream>

#include <complex>

#include <bitset>

#include <vector>

#include <conio.h>

#include <string>

#include <fstream>

using namespace std;

bool inputData(unsigned long &, vector<complex<double> >&); //手工输入数据

void FFT(unsigned long &, vector<complex<double> >&); //FFT变换

void display(unsigned long &, vector<complex<double> >&); //显示结果

bool readDataFromFile(unsigned long &, vector<complex<double> >&); //从文件中读取数据

bool saveResultToFile(unsigned long &, vector<complex<double> >&); //保存结果至文件中

const double PI = 3.1415926;

int _tmain(int argc, _TCHAR* argv[])

{

vector<complex<double> > vecList; //有限长序列

unsigned long ulN = 0; //N

char chChoose = ' '; //功能选择

//功能循环

while(chChoose != 'Q' && chChoose != 'q')

{

//显示选择项

cout << "\nPlease chose a function" << endl;

cout << "\t1.Input data manually, press 'M':" << endl;

cout << "\t2.Read data from file, press 'F':" << endl;

cout << "\t3.Quit, press 'Q'" << endl;

cout << "Please chose:";

//输入选择

chChoose = getch();

//判断

switch(chChoose)

{

case 'm': //手工输入数据

case 'M':

if(inputData(ulN, vecList))

{

FFT(ulN, vecList);

display(ulN, vecList);

saveResultToFile(ulN, vecList);

}

break;

case 'f': //从文档读取数据

case 'F':

if(readDataFromFile(ulN, vecList))

{

FFT(ulN, vecList);

display(ulN, vecList);

saveResultToFile(ulN, vecList);

}

break;

}

}

return 0;

}

bool Is2Power(unsigned long ul) //判断是否是2的整数次幂

{

if(ul < 2)

return false;

while( ul > 1 )

{

if( ul % 2 )

return false;

ul /= 2;

}

return true;

}

bool inputData(unsigned long & ulN, vector<complex<double> >& vecList)

{

//题目

cout<< "\n\n\n==============================Input Data===============================" << endl;

//输入N

cout<< "\nInput N:";

cin>>ulN;

if(!Is2Power(ulN)) //验证N的有效性

{

cout<< "N is invalid (N must like 2, 4, 8, .....), please retry." << endl;

return false;

}

//输入各元素

vecList.clear(); //清空原有序列

complex<double> c;

for(unsigned long i = 0; i < ulN; i++)

{

cout << "Input x(" << i << "):";

cin >> c;

vecList.push_back(c);

}

return true;

}

bool readDataFromFile(unsigned long & ulN, vector<complex<double> >& vecList) //从文件中读取数据

{

//题目

cout<< "\n\n\n===============Read Data From File==============" << endl;

//输入文件名

string strfilename;

cout << "Input filename:" ;

cin >> strfilename;

//打开文件

cout << "open file " << strfilename << "......." <<endl;

ifstream loadfile;

loadfile.open(strfilename.c_str());

if(!loadfile)

{

cout << "\tfailed" << endl;

return false;

}

else

{

cout << "\tsucceed" << endl;

}

vecList.clear();

//读取N

loadfile >> ulN;

if(!loadfile)

{

cout << "can't get N" << endl;

return false;

}

else

{

cout << "N = " << ulN << endl;

}

//读取元素

complex<double> c;

for(unsigned long i = 0; i < ulN; i++)

{

loadfile >> c;

if(!loadfile)

{

cout << "can't get enough infomation" << endl;

return false;

}

else

cout << "x(" << i << ") = " << c << endl;

vecList.push_back(c);

}

//关闭文件

loadfile.close();

return true;

}

bool saveResultToFile(unsigned long & ulN, vector<complex<double> >& vecList) //保存结果至文件中

{

//询问是否需要将结果保存至文件

char chChoose = ' ';

cout << "Do you want to save the result to file? (y/n):";

chChoose = _getch();

if(chChoose != 'y' && chChoose != 'Y')

{

return true;

}

//输入文件名

string strfilename;

cout << "\nInput file name:" ;

cin >> strfilename;

cout << "Save result to file " << strfilename << "......" << endl;

//打开文件

ofstream savefile(strfilename.c_str());

if(!savefile)

{

cout << "can't open file" << endl;

return false;

}

//写入N

savefile << ulN << endl;

//写入元素

for(vector<complex<double> >::iterator i = vecList.begin(); i < vecList.end(); i++)

{

savefile << *i << endl;

}

//写入完毕

cout << "save succeed." << endl;

//关闭文件

savefile.close();

return true;

}

void FFT(unsigned long & ulN, vector<complex<double> >& vecList)

{

//得到幂数

unsigned long ulPower = 0; //幂数

unsigned long ulN1 = ulN - 1;

while(ulN1 > 0)

{

ulPower++;

ulN1 /= 2;

}

//反序

bitset<sizeof(unsigned long) * 8> bsIndex; //二进制容器

unsigned long ulIndex; //反转后的序号

unsigned long ulK;

for(unsigned long p = 0; p < ulN; p++)

{

ulIndex = 0;

ulK = 1;

bsIndex = bitset<sizeof(unsigned long) * 8>(p);

for(unsigned long j = 0; j < ulPower; j++)

{

ulIndex += bsIndex.test(ulPower - j - 1) ? ulK : 0;

ulK *= 2;

}

if(ulIndex > p)

{

complex<double> c = vecList[p];

vecList[p] = vecList[ulIndex];

vecList[ulIndex] = c;

}

}

//计算旋转因子

vector<complex<double> > vecW;

for(unsigned long i = 0; i < ulN / 2; i++)

{

vecW.push_back(complex<double>(cos(2 * i * PI / ulN) , -1 * sin(2 * i * PI / ulN)));

}

for(unsigned long m = 0; m < ulN / 2; m++)

{

cout<< "\nvW[" << m << "]=" << vecW[m];

}

//计算FFT

unsigned long ulGroupLength = 1; //段的长度

unsigned long ulHalfLength = 0; //段长度的一半

unsigned long ulGroupCount = 0; //段的数量

complex<double> cw; //WH(x)

complex<double> c1; //G(x) + WH(x)

complex<double> c2; //G(x) - WH(x)

for(unsigned long b = 0; b < ulPower; b++)

{

ulHalfLength = ulGroupLength;

ulGroupLength *= 2;

for(unsigned long j = 0; j < ulN; j += ulGroupLength)

{

for(unsigned long k = 0; k < ulHalfLength; k++)

{

cw = vecW[k * ulN / ulGroupLength] * vecList[j + k + ulHalfLength];

c1 = vecList[j + k] + cw;

c2 = vecList[j + k] - cw;

vecList[j + k] = c1;

vecList[j + k + ulHalfLength] = c2;

}

}

}

}

void display(unsigned long & ulN, vector<complex<double> >& vecList)

{

cout << "\n\n===========================Display The Result=========================" << endl;

for(unsigned long d = 0; d < ulN;d++)

{

cout << "X(" << d << ")\t\t\t = " << vecList[d] << endl;

}

}

下面为STDAFX.H文件:

// stdafx.h : 标准系统包含文件的包含文件,

// 或是常用但不常更改的项目特定的包含文件

#pragma once

#include <iostream>

#include <tchar.h>

// TODO: 在此处引用程序要求的附加头文件

下面为STDAFX.CPP文件:

// stdafx.cpp : 只包括标准包含文件的源文件

// FFT.pch 将成为预编译头

// stdafx.obj 将包含预编译类型信息

#include "stdafx.h"

// TODO: 在 STDAFX.H 中

//引用任何所需的附加头文件,而不是在此文件中引用

❺ 请给我一份用C语言编辑的用于计算DFT的程序

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

//#define MyE 2.7182818284590452354
//#define GET_ARRAY_LEN(array,len){len = (sizeof(array) / sizeof(array[0]));}

int main()
{
void fft();
int len,i; //len=N
printf("Input the size of the array: ");//设定数组大小
if (scanf("%d",&len)==EOF)
return 0;
double arr[len];

printf("Input the arry elements:\n");
for (i=0;i<len;i++)
{
printf("[%d]: (for example: 5<Enter>)",i);
scanf("%lf",&arr[i]);
}
// int len;//自定义长度
// GET_ARRAY_LEN(a,len);
// printf("%d\n",len);

printf("Result is :\n");

fft(arr,len);
return 0;
}
void fft(double a[],int lang)
{
int N;
int n,k;
N=lang;
double sumsin=0,sumcos=0;
for (k=0;k<N;k++)
{
for (n=0;n<N;n++)
{
sumcos=sumcos+cos(n*k*8*atan(1)/N)*a[n]; //8*atan(1)=2π
//printf("n=%d,sumcos=%.1lf",n,sumcos);
//printf("\n");
sumsin=sumsin+(-1)*sin(n*k*8*atan(1)/N)*a[n];
//printf("n=%d,sumcos=%.1lf",n,sumsin);
//printf("\n");
}
printf("x[%d]= %.1lf + %.1lfj",k,sumcos,sumsin);
sumcos=0;
sumsin=0;
printf("\n");
}
}
【请尊重我的劳动成果,若满意,请及时采纳~~谢谢!!】

❻ 如何根据基于dft的对数幅度谱估计某帧浊音的基音周期

如何根据基于dft的对数幅度谱估计某帧浊音的基音周期
2?运算符丰富。共有34种。C把括号、赋值、逗号等都作为运算符处理。从而使C的运算类型极为丰富,可以实现其他高级语言难以实现的运算。
3?数据结构类型丰富。
4?具有结构化的控制语句。
5?语法限制不太严格,程序设计自由度大。
6?C语言允许直接访问物理地址,能进行位(bit)操作,能实现汇编语言的大部分功能,可以直接对硬件进行操作。因此有人把它称为中级语言。
7?生成目标代码质量高,程序执行效率高。
8?与汇编语言相比,用C语言写的程序可移植性好。
但是,C语言对程序员要求也高,程序员用C写程序会感到限制少、灵活性大,功能强,但较其他高级语言在学习上要困难一些。
1.5 面向对象的程序设计语言

❼ C语言计算基波幅值和功率因数,高人指点!

很高深啊

热点内容
易语言视频播放源码 发布:2025-01-16 15:39:35 浏览:343
肇观算法 发布:2025-01-16 15:38:39 浏览:610
管家婆找不到加密狗 发布:2025-01-16 15:10:28 浏览:308
linux的etcfstab 发布:2025-01-16 15:00:43 浏览:364
电脑无法登录内网服务器 发布:2025-01-16 15:00:28 浏览:575
编译nasm 发布:2025-01-16 14:54:43 浏览:202
编程实战宝典 发布:2025-01-16 14:53:12 浏览:248
ibm服务器怎么关闭开机初始化 发布:2025-01-16 14:50:41 浏览:66
浏览器上传不了图片 发布:2025-01-16 14:45:46 浏览:600
汽车是哪个配置的怎么看 发布:2025-01-16 14:43:47 浏览:51