当前位置:首页 » 编程语言 » python怎么导入图片

python怎么导入图片

发布时间: 2022-08-28 09:00:02

1. python处理图片数据

目录

1.机器是如何存储图像的?

2.在Python中读取图像数据

3.从图像数据中提取特征的方法#1:灰度像素值特征

4.从图像数据中提取特征的方法#2:通道的平均像素值

5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。

但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:

机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。

假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。

这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。

下图的尺寸为22 x 16,读者可以通过计算像素数来验证:

图片源于机器学习应用课程

刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?

彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。

因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:

图片源于机器学习应用课程

左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。

请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。

用Python读取图像数据

下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)

#checking image shape
image.shape, image

(28,28)

矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。

下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。

方法#1:灰度像素值特征

从图像创建特征最简单的方法就是将原始的像素用作单独的特征。

考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。

能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。

那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:

下面来用Python绘制图像,并为该图像创建这些特征:

image = imread('puppy.jpeg', as_gray=True)

image.shape, imshow(image)

(650,450)

该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:

#pixel features

features = np.reshape(image, (660*450))

features.shape, features

(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])

这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。

但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!

方法#2:通道的平均像素值

在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:

image = imread('puppy.jpeg')
image.shape

(660, 450, 3)

这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。

或者,可以使用另一种方法:

生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。

下图可以让读者更清楚地了解这一思路:

这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。

image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape

(660, 450)

现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:

for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)

新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:

features = np.reshape(feature_matrix, (660*450))
features.shape

(297000,)

方法#3:提取边缘特征

请思考,在下图中,如何识别其中存在的对象:

识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?

类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:

笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。

假设图像矩阵如下:

图片源于机器学习应用课程

该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?

当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:

获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。

还有其他各种内核,下面是四种最常用的内核:

图片源于机器学习应用课程

现在回到笔记本,为同一图像生成边缘特征:

#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline

#reading the image
image = imread('puppy.jpeg',as_gray=True)

#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)

imshow(edges_prewitt_vertical, cmap='gray')

2. 如何将显示器图像导入Python程序

摘要 Python是一种通用的编程语言,它提供了许多图像处理库,用于向数字图像中添加图像处理功能。Python中一些最常见的图像处理库是OpenCV , Python成像库(PIL) , Scikit-图像等。

3. Python3 tkinter,怎么在Label/Canvas中插入图片

tkinter基于tcl/tk,只支持gif、png和bitmap位图,其余图片格式需要通过第三方库PIL(pillow)提供的ImageTk转化为tcl/tk能够接受的图片数据。

4. 如何用python导入一张图片

建立工具栏之后,在程序运行添加一张图片运行。
选择图片添加之后,在图片编辑程序里运用函数导入完成。

5. 如何把图片的excel转为Python里面的字典

如何将Excel导入Python之中呢?很简单!做法如下:
首先我们要读取excel要用到xlrd模块,官网安装先上官网安装。
然后就可以跟着里面的例子稍微试一下就知道怎么用了。大概的流程是这样的:
1、导入模块
import xlrd
2、打开Excel文件读取数据
data = xlrd.open_workbook('excel.xls')
3、获取一个工作表
① table = data.sheets()[0] #通过索引顺序获取② table = data.sheet_by_index(0) #通过索引顺序获取③ table = data.sheet_by_name(u'Sheet1')#通过名称获取
4、获取整行和整列的值(返回数组)
table.row_values(i)table.col_values(i)
5、获取行数和列数
table.nrowstable.ncols
6、获取单元格
table.cell(0,0).valuetable.cell(2,3).value
相对来说获取cell比较有用,相当于是给了一个二维数组,剩下的想怎么做都随着自己性子来。这全部归功于代码的简洁实用。若其中仍有若干小坑则花点时间自己琢磨下吧。以下列出的方法供人参考:
1、首先就是我的统计是根据姓名统计各个表中的信息的,但是调试发现不同的表中各个名字貌似不能够匹配,开始怀疑过编码问题,不过后来发现是因为 空格。因为在excel中输入的时候很可能会顺手在一些名字后面加上几个空格或是tab键,这样看起来没什么差别,但是程序处理的时候这就是两个完全 不同的串了。我的解决方法是给每个获取的字符串都加上strip()处理一下。效果良好2、还是字符串的匹配,在判断某个单元格中的字符串(中文)是否等于我所给出的的时候发现无法匹配,并且各种unicode也不太奏效,网络过一些解决 方案,但是都比较复杂或是没用。最后我采用了一个比较变通的方式:直接从excel中获取我想要的值再进行比较,效果是不错就是通用行不太好,个 呢不能问题还没解决。
二、写excel表
写excel表要用到xlwt模块,可到官网下载
下载后大致的操作流程如下:
1、导入模块,复制代码代码 :
import xlwt
2、创建workbook,就是excel,这里只需要保存下,然后复制代码:
workbook = xlwt.Workbook(encoding = 'ascii')
3、接着创建表,然后复制代码:
worksheet = workbook.add_sheet('My Worksheet')
4、再往单元格内写入内容,复制代码代码:
worksheet.write(0, 0, label = 'Row 0, Column 0 Value')
5、最后保存,复制代码代码如下:
workbook.save('Excel_Workbook.xls')
以上便是小编对“如何将Excel导入Python之中呢?”的大致介绍,希望能有所帮助!

6. IDLE3.10.4python画布怎么导入图片

直接从源文件导入。
首先直接从源图片中导入,图片位于images文件夹内。或者利用qrc资源导入,先写qrc文件,然后将qrc文件转化成py文件,然后导入正确的路径就可以了。

7. python怎么输入图片

python导入图片的方法:

一、直接从源图片中导入(图片位于images文件夹内)self.label1=QLabel(self)

self.label1.setPixmap(QPixmap(r"images/head.jpg"))

layout.addWidget(self.label1)

#或者 layout.addWidget(QLabel(self, pixmap=QPixmap("images/head.jpg")))

二、利用qrc资源导入

1、先写qrc文件

images/head.jpg

images/body.jpg

2、将qrc文件转化成py文件

转化命令为:pyrcc5 res.qrc -o res_rc.py

3、导入res_rc.py:import res_rc

4、layout.addWidget(QLabel(self,pixmap=QPixmap(":/images/head.jpg")))

注意需要添加:/符号作为前缀。

8. python怎么在word表中插图片

# -*- coding: UTF8 -*-from docx import Documentfrom docx.shared import Pt doc = Document() # 文件存储路径path = "C:\\Users\\Administrator\\Desktop\\word文档\\" # 读取文档# doc = Document(path + "hello.docx") # 添加图片,后面的参数设置图片尺寸,可以选填doc.add_picture(path + 'cat.jpg', width=Pt(300))

9. Python如何图像识别

首先,先定位好问题是属于图像识别任务中的哪一类,最好上传一张植物叶子的图片。因为目前基于深度学习的卷积神经网络(CNN)确实在图像识别任务中取得很好的效果,深度学习属于机器学习,其研究的范式,或者说处理图像的步骤大体上是一致的。

1、第一步,准备好数据集,这里是指,需要知道输入、输出(视任务而定,针对你这个问题,建议使用有监督模型)是什么。你可以准备一个文件夹,里面存放好植物叶子的图像,而每张图像对应一个标签(有病/没病,或者是多类别标签,可能具体到哪一种病)。
具体实现中,会将数据集分为三个:训练集(计算模型参数)、验证集(调参,这个经常可以不需要实现划分,在python中可以用scikit-learn中的函数解决。测试集用于验证模型的效果,与前面两个的区别是,模型使用训练集和验证集时,是同时使用了输入数据和标签,而在测试阶段,模型是用输入+模型参数,得到的预测与真实标签进行对比,进而评估效果。
2、确定图像识别的任务是什么?

图像识别的任务可以分为四个:图像分类、目标检测、语义分割、实例分割,有时候是几个任务的结合。
图像分类是指以图像为输入,输出对该图像内容分类的描述,可以是多分类问题,比如猫狗识别。通过足够的训练数据(猫和狗的照片-标签,当然现在也有一系列的方法可以做小样本训练,这是细节了,这里并不敞开讲),让计算机/模型输出这张图片是猫或者狗,及其概率。当然,如果你的训练数据还有其它动物,也是可以的,那就是图像多分类问题。
目标检测指将图像或者视频中的目标与不感兴趣的部分区分开,判断是否存在目标,并确定目标的具体位置。比如,想要确定这只狗所佩戴的眼睛的位置,输入一张图片,输出眼睛的位置(可视化后可以讲目标区域框出来)。

看到这里,应该想想植物叶子诊断疾病的问题,只需要输入一整张植物叶子的图片,输出是哪种疾病,还是需要先提取叶子上某些感兴趣区域(可能是病变区域),在用病变区域的特征,对应到具体的疾病?
语义分割是当今计算机视觉领域的关键问题之一,宏观上看,语义分割是一项高层次的任务。其目的是以一些原始图像作为输入,输出具有突出显示的感兴趣的掩膜,其实质上是实现了像素级分类。对于输入图片,输出其舌头区域(注意可以是不规则的,甚至不连续的)。

而实例分割,可以说是在语义分割的基础上,在像素层面给出属于每个实例的像素。

看到这里,可以具体思考下自己的问题是对应其中的哪一类问题,或者是需要几种任务的结合。

3、实际操作
可以先通过一个简单的例子入手,先了解构建这一个框架需要准备什么。手写数字识别可以说是深度学习的入门数据集,其任务也经常作为该领域入门的案例,也可以自己在网上寻找。

10. python3中如何加载图片

答: 如下所示。

  • 可利用opencv-Python接口,使用imread()函数,那么导入名为example的图片的例子如下所示。

import cv2



image = cv2.imread('./example.png')

  • 也可以使用matplotlib.pyplot中的pyplot模块,具体例子如下所示。

import matplotlib.pyplot as plt



import matplotlib.image as mpimg



import numpy as np



image = mpimg.imread('./example.png')



print image.shape



plt.imshow(image) #调用imshow函数

在这里只是说了两种方法,希望能够帮助到你。

热点内容
诈骗的脚本 发布:2025-01-16 23:51:27 浏览:314
电脑配置有点低怎么玩和平精英 发布:2025-01-16 23:46:14 浏览:818
ipfs分布式服务器是什么币种 发布:2025-01-16 23:32:29 浏览:991
android动态icon 发布:2025-01-16 23:03:12 浏览:605
优酷电脑缓存在哪 发布:2025-01-16 22:58:29 浏览:298
进口途锐哪个配置好 发布:2025-01-16 22:35:24 浏览:962
骨干路由器怎么配置 发布:2025-01-16 22:24:39 浏览:244
途安2021款买哪个配置 发布:2025-01-16 22:21:01 浏览:329
图片的压缩原理 发布:2025-01-16 22:17:15 浏览:493
云服务器本地电脑 发布:2025-01-16 22:17:04 浏览:961