cnn的python实现
Ⅰ 怎样用python构建一个卷积神经网络
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
Ⅱ 怎样用python构建一个卷积神经网络模型
上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出。实验输入仍然采用MNIST图像使用10个feature map时,卷积和pooling的结果分别如下所示。
部分源码如下:
[python]view plain
#coding=utf-8
'''''
Createdon2014年11月30日
@author:Wangliaofan
'''
importnumpy
importstruct
importmatplotlib.pyplotasplt
importmath
importrandom
import
#test
defsigmoid(inX):
if1.0+numpy.exp(-inX)==0.0:
return999999999.999999999
return1.0/(1.0+numpy.exp(-inX))
defdifsigmoid(inX):
returnsigmoid(inX)*(1.0-sigmoid(inX))
deftangenth(inX):
return(1.0*math.exp(inX)-1.0*math.exp(-inX))/(1.0*math.exp(inX)+1.0*math.exp(-inX))
defcnn_conv(in_image,filter_map,B,type_func='sigmoid'):
#in_image[num,featuremap,row,col]=>in_image[Irow,Icol]
#featuresmap[kfilter,row,col]
#type_func['sigmoid','tangenth']
#out_feature[kfilter,Irow-row+1,Icol-col+1]
shape_image=numpy.shape(in_image)#[row,col]
#print"shape_image",shape_image
shape_filter=numpy.shape(filter_map)#[kfilter,row,col]
ifshape_filter[1]>shape_image[0]orshape_filter[2]>shape_image[1]:
raiseException
shape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)
out_feature=numpy.zeros(shape_out)
k,m,n=numpy.shape(out_feature)
fork_idxinrange(0,k):
#rotate180tocalculateconv
c_filter=numpy.rot90(filter_map[k_idx,:,:],2)
forr_idxinrange(0,m):
forc_idxinrange(0,n):
#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))
conv_temp=numpy.dot(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)
sum_temp=numpy.sum(conv_temp)
iftype_func=='sigmoid':
out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])
eliftype_func=='tangenth':
out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])
else:
raiseException
returnout_feature
defcnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):
k,row,col=numpy.shape(out_feature)
max_index_Matirx=numpy.zeros((k,row,col))
out_row=int(numpy.floor(row/pooling_size))
out_col=int(numpy.floor(col/pooling_size))
out_pooling=numpy.zeros((k,out_row,out_col))
fork_idxinrange(0,k):
forr_idxinrange(0,out_row):
forc_idxinrange(0,out_col):
temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]
out_pooling[k_idx,r_idx,c_idx]=numpy.amax(temp_matrix)
max_index=numpy.argmax(temp_matrix)
#printmax_index
#printmax_index/pooling_size,max_index%pooling_size
max_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1
returnout_pooling,max_index_Matirx
defpoolwithfunc(in_pooling,W,B,type_func='sigmoid'):
k,row,col=numpy.shape(in_pooling)
out_pooling=numpy.zeros((k,row,col))
fork_idxinrange(0,k):
forr_idxinrange(0,row):
forc_idxinrange(0,col):
out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])
returnout_pooling
#out_featureistheoutputofconv
defbackErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):
k1,row,col=numpy.shape(out_feature)
error_conv=numpy.zeros((k1,row,col))
k2,theta_row,theta_col=numpy.shape(theta)
ifk1!=k2:
raiseException
foridx_kinrange(0,k1):
foridx_rowinrange(0,row):
foridx_colinrange(0,col):
error_conv[idx_k,idx_row,idx_col]=
max_index_Matirx[idx_k,idx_row,idx_col]*
float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*
difsigmoid(out_feature[idx_k,idx_row,idx_col])
returnerror_conv
defbackErrorfromConvToInput(theta,inputImage):
k1,row,col=numpy.shape(theta)
#print"theta",k1,row,col
i_row,i_col=numpy.shape(inputImage)
ifrow>i_roworcol>i_col:
raiseException
filter_row=i_row-row+1
filter_col=i_col-col+1
detaW=numpy.zeros((k1,filter_row,filter_col))
#thesamewithconvvalidinmatlab
fork_idxinrange(0,k1):
foridx_rowinrange(0,filter_row):
foridx_colinrange(0,filter_col):
subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]
#print"subInputMatrix",numpy.shape(subInputMatrix)
#rotatetheta180
#printnumpy.shape(theta)
theta_rotate=numpy.rot90(theta[k_idx,:,:],2)
#print"theta_rotate",theta_rotate
dotMatrix=numpy.dot(subInputMatrix,theta_rotate)
detaW[k_idx,idx_row,idx_col]=numpy.sum(dotMatrix)
detaB=numpy.zeros((k1,1))
fork_idxinrange(0,k1):
detaB[k_idx]=numpy.sum(theta[k_idx,:,:])
returndetaW,detaB
defloadMNISTimage(absFilePathandName,datanum=60000):
images=open(absFilePathandName,'rb')
buf=images.read()
index=0
magic,numImages,numRows,numColumns=struct.unpack_from('>IIII',buf,index)
printmagic,numImages,numRows,numColumns
index+=struct.calcsize('>IIII')
ifmagic!=2051:
raiseException
datasize=int(784*datanum)
datablock=">"+str(datasize)+"B"
#nextmatrix=struct.unpack_from('>47040000B',buf,index)
nextmatrix=struct.unpack_from(datablock,buf,index)
nextmatrix=numpy.array(nextmatrix)/255.0
#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)
#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)
nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)
returnnextmatrix,numImages
defloadMNISTlabels(absFilePathandName,datanum=60000):
labels=open(absFilePathandName,'rb')
buf=labels.read()
index=0
magic,numLabels=struct.unpack_from('>II',buf,index)
printmagic,numLabels
index+=struct.calcsize('>II')
ifmagic!=2049:
raiseException
datablock=">"+str(datanum)+"B"
#nextmatrix=struct.unpack_from('>60000B',buf,index)
nextmatrix=struct.unpack_from(datablock,buf,index)
nextmatrix=numpy.array(nextmatrix)
returnnextmatrix,numLabels
defsimpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):
decayRate=0.01
MNISTimage,num1=loadMNISTimage("F:\train-images-idx3-ubyte",imageNum)
printnum1
row,col=numpy.shape(MNISTimage[0,0,:,:])
out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)
MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)
MLP.setTrainDataNum(imageNum)
MLP.loadtrainlabel("F:\train-labels-idx1-ubyte")
MLP.initialweights()
#MLP.printWeightMatrix()
rng=numpy.random.RandomState(23455)
W_shp=(numofFilter,filter_size,filter_size)
W_bound=numpy.sqrt(numofFilter*filter_size*filter_size)
W_k=rng.uniform(low=-1.0/W_bound,high=1.0/W_bound,size=W_shp)
B_shp=(numofFilter,)
B=numpy.asarray(rng.uniform(low=-.5,high=.5,size=B_shp))
cIter=0
whilecIter<maxIter:
cIter+=1
ImageNum=random.randint(0,imageNum-1)
conv_out_map=cnn_conv(MNISTimage[ImageNum,0,:,:],W_k,B,"sigmoid")
out_pooling,max_index_Matrix=cnn_maxpooling(conv_out_map,2,"max")
pool_shape=numpy.shape(out_pooling)
MLP_input=out_pooling.reshape(1,1,out_Di)
#printnumpy.shape(MLP_input)
DetaW,DetaB,temperror=MLP.backwardPropogation(MLP_input,ImageNum)
ifcIter%50==0:
printcIter,"Temperror:",temperror
#printnumpy.shape(MLP.Theta[MLP.Nl-2])
#printnumpy.shape(MLP.Ztemp[0])
#printnumpy.shape(MLP.weightMatrix[0])
theta_pool=MLP.Theta[MLP.Nl-2]*MLP.weightMatrix[0].transpose()
#printnumpy.shape(theta_pool)
#print"theta_pool",theta_pool
temp=numpy.zeros((1,1,out_Di))
temp[0,:,:]=theta_pool
back_theta_pool=temp.reshape(pool_shape)
#print"back_theta_pool",numpy.shape(back_theta_pool)
#print"back_theta_pool",back_theta_pool
error_conv=backErrorfromPoolToConv(back_theta_pool,max_index_Matrix,conv_out_map,2)
#print"error_conv",numpy.shape(error_conv)
#printerror_conv
conv_DetaW,conv_DetaB=backErrorfromConvToInput(error_conv,MNISTimage[ImageNum,0,:,:])
#print"W_k",W_k
#print"conv_DetaW",conv_DetaW
Ⅲ 如何用caffe的python接口实现cnn
简单的说,你需要把py-faster-rcnn下的caffe-fast-rcnn迁移到Win下重新编译,主要是为了编译pycaffe,开启WITH_PYTHON_LAYER,还要在Win下把lib目录下的python代码重新编译以上两项我都用的是CPU编译这样就可以运行Tools下的Demo.py了,参数--cpu。模型文件我用linux下训练好的。
Ⅳ 如何利用Python做简单的验证码识别
1摘要
验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的防火墙功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻。本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义。
然后经过了一年的时间,笔者又研究和get到了一种更强大的基于CNN卷积神经网络的直接端到端的验证识别技术(文章不是我的,然后我把源码整理了下,介绍和源码在这里面):
基于python语言的tensorflow的‘端到端’的字符型验证码识别源码整理(github源码分享)
2关键词
关键词:安全,字符图片,验证码识别,OCR,Python,SVM,PIL
3免责声明
本文研究所用素材来自于某旧Web框架的网站完全对外公开的公共图片资源。
本文只做了该网站对外公开的公共图片资源进行了爬取,并未越权做任何多余操作。
本文在书写相关报告的时候已经隐去漏洞网站的身份信息。
本文作者已经通知网站相关人员此系统漏洞,并积极向新系统转移。
本报告的主要目的也仅是用于OCR交流学习和引起大家对验证安全的警觉。
4引言
关于验证码的非技术部分的介绍,可以参考以前写的一篇科普类的文章:
互联网安全防火墙(1)--网络验证码的科普
里面对验证码的种类,使用场景,作用,主要的识别技术等等进行了讲解,然而并没有涉及到任何技术内容。本章内容则作为它的技术补充来给出相应的识别的解决方案,让读者对验证码的功能及安全性问题有更深刻的认识。
5基本工具
要达到本文的目的,只需要简单的编程知识即可,因为现在的机器学习领域的蓬勃发展,已经有很多封装好的开源解决方案来进行机器学习。普通程序员已经不需要了解复杂的数学原理,即可以实现对这些工具的应用了。
主要开发环境:
python3.5
python SDK版本
PIL
图片处理库
libsvm
开源的svm机器学习库
准备原始图片素材
图片预处理
图片字符切割
图片尺寸归一化
图片字符标记
字符图片特征提取
生成特征和标记对应的训练数据集
训练特征标记数据生成识别模型
使用识别模型预测新的未知图片集
达到根据“图片”就能返回识别正确的字符集的目标
- def get_feature(img): """
- 获取指定图片的特征值,
- 1. 按照每排的像素点,高度为10,则有10个维度,然后为6列,总共16个维度
- :param img_path:
- :return:一个维度为10(高度)的列表 """
- width, height = img.size
- pixel_cnt_list = []
- height = 10 for y in range(height):
- pix_cnt_x = 0 for x in range(width): if img.getpixel((x, y)) == 0: # 黑色点
- pix_cnt_x += 1
- pixel_cnt_list.append(pix_cnt_x) for x in range(width):
- pix_cnt_y = 0 for y in range(height): if img.getpixel((x, y)) == 0: # 黑色点
- pix_cnt_y += 1
- pixel_cnt_list.append(pix_cnt_y) return pixel_cnt_list
关于环境的安装,不是本文的重点,故略去。
6基本流程
一般情况下,对于字符型验证码的识别流程如下:
7素材准备
7.1素材选择
由于本文是以初级的学习研究目的为主,要求“有代表性,但又不会太难”,所以就直接在网上找个比较有代表性的简单的字符型验证码(感觉像在找漏洞一样)。
最后在一个比较旧的网站(估计是几十年前的网站框架)找到了这个验证码图片。
原始图:
然后就将图片素材特征化,按照libSVM指定的格式生成一组带特征值和标记值的向量文
Ⅳ python keras CNN训练文字的一位特征向量怎么构造卷积层
keras/imdb_cnn.py at master · fchollet/keras · GitHub
'''This example demonstrates the use of Convolution1D for text classification.
这个例子应该能帮到你
不过分类是 binary 的
要dense 层自己改成 softmax
我自己毕业论文也写了一个 koalaGreener/Character-level-Convolutional-Network-for-Text-Classification-Applied-to-Chinese-Corpus
是把CNN用在文本分类的 不过dataset我是自己构建了新的中文字符和拼音字符,然后做了比较. 文章链接是[1611.04358] Character-level Convolutional Network for Text Classification Applied to Chinese Corpus 仅供参考啦 那时候不会做搜到这个链接也挺茫然的 后来者可以稍微参考一下
Ⅵ Python keras构建CNN
data.py:
#coding:utf-8
"""
Author:wepon
Source:https://github.com/wepe
"""
importos
fromPILimportImage
importnumpyasnp
#读取文件夹mnist下的42000张图片,图片为灰度图,所以为1通道,图像大小28*28
#如果是将彩色图作为输入,则将1替换为3,并且data[i,:,:,:]=arr改为data[i,:,:,:]=[arr[:,:,0],arr[:,:,1],arr[:,:,2]]
defload_data():
data=np.empty((42000,1,28,28),dtype="float32")
label=np.empty((42000,),dtype="uint8")
imgs=os.listdir("./mnist")
num=len(imgs)
foriinrange(num):
img=Image.open("./mnist/"+imgs[i])
arr=np.asarray(img,dtype="float32")
data[i,:,:,:]=arr
label[i]=int(imgs[i].split('.')[0])
returndata,label
由于Keras系统升级,cnn.py代码调整如下:
#coding:utf-8
'''
GPUruncommand:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32pythoncnn.py
CPUruncommand:
pythoncnn.py
'''
#导入各种用到的模块组件
from__future__importabsolute_import
from__future__importprint_function
fromkeras.preprocessing.imageimportImageDataGenerator
fromkeras.modelsimportSequential
fromkeras.layers.coreimportDense,Dropout,Activation,Flatten
fromkeras.layers.advanced_activationsimportPReLU
fromkeras.layers.,MaxPooling2D
fromkeras.optimizersimportSGD,Adadelta,Adagrad
fromkeras.utilsimportnp_utils,generic_utils
fromsix.movesimportrange
fromdataimportload_data
importrandom
#加载数据
data,label=load_data()
#打乱数据
index=[iforiinrange(len(data))]
random.shuffle(index)
data=data[index]
label=label[index]
print(data.shape[0],'samples')
#label为0~9共10个类别,keras要求格式为binaryclassmatrices,转化一下,直接调用keras提供的这个函数
label=np_utils.to_categorical(label,10)
###############
#开始建立CNN模型
###############
#生成一个model
model=Sequential()
#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧:model.add(Dropout(0.5))
model.add(Convolution2D(4,5,5,border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8,3,3,border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2,2)))
#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16,3,3,border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2,2)))
#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128,init='normal'))
model.add(Activation('tanh'))
#Softmax分类,输出是10类别
model.add(Dense(10,init='normal'))
model.add(Activation('softmax'))
#############
#开始训练模型
##############
#使用SGD+momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd=SGD(l2=0.0,lr=0.05,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(loss='categorical_crossentropy',optimizer=sgd,class_mode="categorical")
#调用fit方法,就是一个训练过程.训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data,label,batch_size=100,nb_epoch=10,shuffle=True,verbose=1,show_accuracy=True,validation_split=0.2)
"""
#使用dataaugmentation的方法
#一些参数和调用的方法,请看文档
datagen=ImageDataGenerator(
featurewise_center=True,#setinputmeanto0overthedataset
samplewise_center=False,#seteachsamplemeanto0
featurewise_std_normalization=True,#divideinputsbystdofthedataset
samplewise_std_normalization=False,#divideeachinputbyitsstd
zca_whitening=False,#applyZCAwhitening
rotation_range=20,#(degrees,0to180)
width_shift_range=0.2,#(fractionoftotalwidth)
height_shift_range=0.2,#randomlyshiftimagesvertically(fractionoftotalheight)
horizontal_flip=True,#randomlyflipimages
vertical_flip=False)#randomlyflipimages
#
#(std,mean,)
datagen.fit(data)
foreinrange(nb_epoch):
print('-'*40)
print('Epoch',e)
print('-'*40)
print("Training...")
#
progbar=generic_utils.Progbar(data.shape[0])
forX_batch,Y_batchindatagen.flow(data,label):
loss,accuracy=model.train(X_batch,Y_batch,accuracy=True)
progbar.add(X_batch.shape[0],values=[("trainloss",loss),("accuracy:",accuracy)])
"""
Ⅶ cnn卷积神经网络用什么语言来写pascial
200+
这个是hinton matlab代码的C++改写版. convnetjs - Star,SAE,首选的肯定是LIBSVM这个库;RBM#47. DeepLearn Toolbox - Star,包括了CNN;C++SVM方面,Java。
2。
下面主要一些DeepLearning的GitHub项目吧;SdA#47:2200+
实现了卷积神经网络,还实现了Rasmussen的共轭梯度Conjugate Gradient算法,DBN,C/CRBM/CDBN#47:Python。
3,CAE等主流模型,实现的模型有DBN#47,可以用来做分类,语言是Python;LR等,从算法与实现上都比较全:800+
实现了深度学习网络. rbm-mnist - Star,应该是应用最广的机器学习库了,强化学习等. Deep Learning(yusugomo) - Star,Scala:1000+
Matlab实现中最热的库存,提供了5种语言的实现。
5;dA#47:500+
这是同名书的配套代码。
4. Neural-Networks-And-Deep-Learning - Star!
1,回归
Ⅷ cnn几个Python文件
3个。
卷积神经网络(CNN) 卷积神经网络(Convolutional Neural Network, CNN):至少在网络中的一层使用卷积运算来代替一般矩阵运算的神经网络。
Ⅸ 如何使用python 语言来实现测试开发
对于各种驱动接口,Python来编写测试用例的好处是:由于Python不需要编译,你所执行的也就是你所编写的,当发生异常的时候,你无须打开集成开发环境,加载测试工程、并调试,你能够很方便的看到python测试脚本的内容,什么地方出了异常可以立刻发现,例如:
from ctypes import *
rc =c_int(-12345);
dll = windll.LoadLibrary("dmodbc.dll");#加载被测试组件
#=================#
SQLHANDLE_env = pointer(c_long(0));
SQLHANDLE_cnn = pointer(c_long(0));
SQLHANDLE_stmt = pointer(c_long(0));
pdns = c_char_p("FASTDB");
puid = c_char_p("SYSDBA");
ppwd = c_char_p("SYSDBA");
#env handle
rc = dll.SQLAllocHandle(1,None,byref(SQLHANDLE_env));
print "result of henv handle alloc :%d" %rc;
#cnn handle
rc = dll.SQLAllocHandle(2,SQLHANDLE_env,byref(SQLHANDLE_cnn));
print "result of cnn handle alloc :%d" %rc;
#connect!
rc = dll.SQLConnect(SQLHANDLE_cnn,pdns,-3,puid,-3,ppwd,-3)
print "result of connect :%d" %rc;
#stmt handle
rc = dll.SQLAllocHandle(3,SQLHANDLE_cnn,byref(SQLHANDLE_stmt));
print "result of stmt handle alloc:%d" %rc;
#exec
rc = dll.SQLExecDirect(SQLHANDLE_stmt,"insert into t values(1)",-3);
print "result of exec:%d" %rc;
#free========================
rc = dll.SQLFreeHandle(3, SQLHANDLE_stmt);
print rc;
rc = dll.SQLDisconnect(SQLHANDLE_cnn);
print rc;
rc = dll.SQLFreeHandle(2, SQLHANDLE_cnn);
print rc;
rc = dll.SQLFreeHandle(1, SQLHANDLE_env);
print rc;
在上面我们可以看到,Python调用c/c++接口是十分容易的,只需要把动态库加载进来,然后把这个动态库当作一个对象实例来使用就可以了。下面将是一个使用ado.net接口的例子:
import System;
from Dm import *#Dm是DMDBMS提供的ado.Net的DataProvider
#print dir(Dm.DmCommand);
i =0;
cnn = Dm.DmConnection("server = 127.0.0.1; User ID = SYSDBA; PWD = SYSDBA; Database = SYSTEM; port = 12345");
cmd = Dm.DmCommand();
cmd.Connection = cnn;
cmd.CommandText = "insert into t values(1);";
cnn.Open();
i=cmd.ExecuteNonQuery();
print i;
cmd.Dispose();
cnn.Close();
可以看到,.net对象的使用与在VisualStdio上进行开发几乎没有任何区别。
通过使用Python进行测试用例的开发,最大的好处莫过于:学习成本非常低,测试工程师只需要学习Python,对于其他语言稍有了解就可以了。同时只需要少量的测试开发工程师对Python测试框架进行维护。
这样的好处就是便于测试人员将精力专精在一个方向,免于“什么都会一点,但什么都不精”的情况。当然测试人员具备广阔的知识面,会使用各种常见的开发工具与平台是好事情,并且也是必要的,不过在短时间内要求迅速能够胜任大多数任务也是企业在人才培养上的期望目标。