python测试工具
㈠ python主要可以做什么
python主要可以做Web 和 Internet开发、科学计算和统计、桌面界面开发、软件开发、后端开发等领域的工作。
Python是一种解释型脚本语言。Python可以应用于众多领域,如:数据分析、组件集成、网络服务、图像处理、数值计算和科学计算等众多领域。互联网公司广泛使用Python来做的事一般有:自动化运维、自动化测试、大数据分析、爬虫、Web 等。
(1)python测试工具扩展阅读
python的主要优点:
简单易学:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。因有极其简单的说明文档,Python极其容易上手。
运行速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。
免费、开源资源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
可扩展性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
㈡ Python渗透测试工具都有哪些
网络
Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包。可用作交互式包处理程序或单独作为一个库
pypcap, Pcapy, pylibpcap: 几个不同 libpcap 捆绑的python库
libdnet: 低级网络路由,包括端口查看和以太网帧的转发
dpkt: 快速,轻量数据包创建和分析,面向基本的 TCP/IP 协议
Impacket: 伪造和解码网络数据包,支持高级协议如 NMB 和 SMB
pynids: libnids 封装提供网络嗅探,IP 包碎片重组,TCP 流重组和端口扫描侦查
Dirtbags py-pcap: 无需 libpcap 库支持读取 pcap 文件
flowgrep: 通过正则表达式查找数据包中的 Payloads
Knock Subdomain Scan: 通过字典枚举目标子域名
SubBrute: 快速的子域名枚举工具
Mallory: 可扩展的 TCP/UDP 中间人代理工具,可以实时修改非标准协议
Pytbull: 灵活的 IDS/IPS 测试框架(附带超过300个测试样例)
调试和逆向工程
Paimei: 逆向工程框架,包含PyDBG, PIDA , pGRAPH
Immunity Debugger: 脚本 GUI 和命令行调试器
mona.py: Immunity Debugger 中的扩展,用于代替 pvefindaddr
IDAPython: IDA pro 中的插件,集成 Python 编程语言,允许脚本在 IDA Pro 中执行
PyEMU: 全脚本实现的英特尔32位仿真器,用于恶意软件分析
pefile: 读取并处理 PE 文件
pydasm: Python 封装的libdasm
PyDbgEng: Python 封装的微软 Windows 调试引擎
uhooker: 截获 DLL 或内存中任意地址可执行文件的 API 调用
diStorm: AMD64 下的反汇编库
python-ptrace: Python 写的使用 ptrace 的调试器
vdb/vtrace: vtrace 是用 Python 实现的跨平台调试 API, vdb 是使用它的调试器
Androguard: 安卓应用程序的逆向分析工具
Capstone: 一个轻量级的多平台多架构支持的反汇编框架。支持包括ARM,ARM64,MIPS和x86/x64平台
PyBFD: GNU 二进制文件描述(BFD)库的 Python 接口
Fuzzing
Sulley: 一个模糊器开发和模糊测试的框架,由多个可扩展的构件组成的
Peach Fuzzing Platform: 可扩展的模糊测试框架(v2版本 是用 Python 语言编写的)
antiparser: 模糊测试和故障注入的 API
TAOF: (The Art of Fuzzing, 模糊的艺术)包含 ProxyFuzz, 一个中间人网络模糊测试工具
untidy: 针对 XML 模糊测试工具
Powerfuzzer: 高度自动化和可完全定制的 Web 模糊测试工具
SMUDGE: 纯 Python 实现的网络协议模糊测试
Mistress: 基于预设模式,侦测实时文件格式和侦测畸形数据中的协议
Fuzzbox: 媒体多编码器的模糊测试
Forensic Fuzzing Tools: 通过生成模糊测试用的文件,文件系统和包含模糊测试文件的文件系统,来测试取证工具的鲁棒性
Windows IPC Fuzzing Tools: 使用 Windows 进程间通信机制进行模糊测试的工具
WSBang: 基于 Web 服务自动化测试 SOAP 安全性
Construct: 用于解析和构建数据格式(二进制或文本)的库
fuzzer.py(feliam): 由 Felipe Andres Manzano 编写的简单模糊测试工具
Fusil: 用于编写模糊测试程序的 Python 库
Web
Requests: 优雅,简单,人性化的 HTTP 库
HTTPie: 人性化的类似 cURL 命令行的 HTTP 客户端
ProxMon: 处理代理日志和报告发现的问题
WSMap: 寻找 Web 服务器和发现文件
Twill: 从命令行界面浏览网页。支持自动化网络测试
Ghost.py: Python 写的 WebKit Web 客户端
Windmill: Web 测试工具帮助你轻松实现自动化调试 Web 应用
FunkLoad: Web 功能和负载测试
spynner: Python 写的 Web浏览模块支持 Javascript/AJAX
python-spidermonkey: 是 Mozilla JS 引擎在 Python 上的移植,允许调用 Javascript 脚本和函数
mitmproxy: 支持 SSL 的 HTTP 代理。可以在控制台接口实时检查和编辑网络流量
pathod/pathoc: 变态的 HTTP/S 守护进程,用于测试和折磨 HTTP 客户端
㈢ python 适合做性能测试工具吗
1、测试类型可以包括:白盒测试、黑盒测试(功能测试、性能测试)等。
2、不同的测试类型使用的自动化测试方法不同,白盒测试主要针对代码级的单元测试、黑盒测试主要面对功能级和系统级的验证测试。
3、自动化测试,针对白盒测试,一般需要有一定的编程基础,即能够基于功能代码写测试代码,常用的单元测试方面的自动化测试工具很多,上网一搜全是。
㈣ Python测试有什么用途
Python测试有什么用途
Python测试用途如下:
1、使用Python +Selenium实现web端的UI自动化
Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。这个工具的主要功能包括:测试与浏览器的兼容性——测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上。测试系统功能——创建回归测试检验软件功能和用户需求。
Python与Selenium结合能够很好的实现web端的UI级别的自动化。Selenium几乎能解决目前遇到的web页面中所有的定位难题,当然有些特殊的可以借助JavaScripts也可以实现。
2、使用Python + Requests实现接口测试
进入python requests官网看到的的第一句话是:Requests 唯一的一个非转基因的Python HTTP 库,人类可以安全享用。
通过requests库提供的各种API可以非常方便的模拟HTTP请求,实现接口自动化测试。
3、使用Python + Appium实现app自动化测试
Appium是一个自动化测试开源工具,支持 iOS 平台和Android 平台上的原生应用,web 应用和混合应用。
所谓的 移动原生应用 是指那些用iOS 或者 Android SDK 写的应用。所谓的 移动 web 应用 是指使用移动浏览器访问的应用(Appium 支持 iOS 上的Safari 和 Android 上的 Chrome)。所谓的“混合应用”是指原生代码封装网页视图——原生代码和web 内容交互。比如,像 Phonegap,可以帮助开发者使用网页技术开发应用,然后用原生代码封装,这些就是混合应用。
重要的是,Appium 是一个跨平台的工具:它允许测试人员在不同的平台(iOS,Android)使用同一套API来写自动化测试脚本,这样大大增加了iOS 和 Android 测试套件间代码的复用性。
Appium也是多语言支持,当然也是支持python的,运用python + Appium可以实现跨平台的app UI自动化测试。
更多技术请关注Python视频教程。
㈤ 支持python编写脚本的自动化测试工具
python的单测nose框架,还有各互联网公司都有自己开发的python框架,我这里了解一些,名字就不在这里发了哈!你还是针对自己的需要搞一个把
㈥ 想学python,用来做自动化测试,不知道这个需要适用于什么测试工具,哪位大神
开源功能自动化测试工具:Watir、Selenium、MaxQ、WebInject 开源性能自动化测试工具:Jmeter、OpenSTA、DBMonster、TPTEST、Web Application Load Simulator 不过,大家用的最多的就是QTP和LR哈,希望对你有帮助
㈦ 怎么用python做自动化测试
1新建一台Jenkins服务器,安装并配置好Jenkins2配置一个自动化测试脚本的代码库,可以使用Git或者SVN等版本控制工具。然后在Jenkins服务器上配置一个Job,负责自动的同步最新代码到Jenkins服务器上。3配置要跑自动化测试的虚拟机VM,推荐干净环境下安装需要跑自动化测试的依赖软件工具或者配置以及自动化测试工具(不提前安装配置也行,可以在跑自动化之前用另外的脚本自动安装配置),配置好之后关机并打一个snapshot镜像快照,并命名为prebuild或其它。4新建一个JenkinsJob,用来跑自动化。配置需要连接并使用的自动化测试虚拟机,配置要构建的自动化测试框架xml脚本文件(后面步骤有说明)和target,以及要归档的测试报告,邮件发送等等。5接下来的重点就是自动化测试框架的xml脚本文件了,首先里面定义一个target,负责获取自动化测试对象的安装包。6接着定义一个target(可选),负责从版本库上获取自动化测试脚本同步到Jenkins服务器上(也可以直接使用JenkinsJob本身的插件配置来获取代码)。7定义一个target,负责连接到虚拟机服务器,并恢复到虚拟机的原始状态例如prebuild,然后开机8定义一个target,负责拷贝项目产品安装包和自动化测试源代码到目标虚拟机上。9定义一个target,负责连接到目标测试虚拟机,并打开自动化测试工具,然后运行自动化测试脚本10定义一个target,负责处理自动化测试报告文件和日志文件并把它们从自动化测试虚拟机拷贝到Jenkins服务器对应的Job工作空间下。11最后定义一个主target,按照上面的target流程依次调用。这个主target就是Jenkins服务器上的自动化测试Job中配置的需要构建的Target。
㈧ python自动化测试的工具有哪些
同在软件测试岗位。由于同样初学python,所以没有太多的实践经验。 使用python的单元测试框架,可以建立测试类,构造测试集。 测试类中包含了common的测试方法定义,包括测试开始前建立测试环境的setUp方法和测试完成后清理还原环境的tearDown方...
㈨ Python自动化测试框架有哪些
自动化测试常用的Python框架有哪些?常用的框架有Robot Framework、Pytest、UnitTest/PyUnit、Behave、Lettuce。Pytest、Robot Framework和UnitTest主要用于功能与单元测试,Lettuce和Behave仅适用于行为驱动测试。
一、Robot Framework
Python测试框架之一,Robot Framework被用在测试驱动(test-driven)类型的开发与验收中。虽然是由Python开发而来,但是它也可以在基于.Net的IronPython和基于Java的Jython上运行。作为一个Python框架,Robot还能够兼容诸如Windows、MacOS、以及Linux等平台。
在使用Robot Framework(RF)之前,需要先安装Python 2.7.14及以上的版本。推荐使用Python 3.6.4,以确保适当的注释能够被添加到代码段中,并能够跟踪程序的更改。同时还需要安装Python包管理器--pip。
二、Pytest
适用于多种软件测试的Pytest,是另一个Python类型的自动化测试框架。凭借着其开源和易学的特点,该工具经常被QA(质量分析)团队、开发团队、个人团队、以及各种开源项目所使用。鉴于Pytest具有“断言重写(assert rewriting)”之类的实用功能,许多大型互联网应用,如Dropbox和Mozilla,都已经从下面将要提到的unittest(Pyunit)切换到了Pytest之上。
除了基本的Python知识,用户并不需要更多的技术储备。另外,用户只需要有一台带有命令行界面的测试设备,并且安装好了Python包管理器、以及可用于开发的IDE工具。
三、UnitTest/PyUnit
UnitTest/PyUnit一种标准化的针对单元测试的Python类自动化测试框架。基类TestCase提供了各种断言方法、以及所有清理和设置的例程。因此,TestCase子类中的每一种方法都是以“test”作为名词前缀,以标识它们能够被作为测试用例所运行。用户可以使用load方法和TestSuite类来分组、并加载各种测试。
可以通过联合使用,来构建自定义的测试运行器。正如我们使用Junit去测试Selenium那样,UnitTest也会用到UnitTest-sml-reporting、并能生成各种XML类型的报告。由于UnitTest默认使用了Python,因此我们并不需要什么先决条件。除了需要具备Python框架的基本知识,您也可以额外地安装pip、以及用于开发的IDE工具。
四、Behave
行为驱动开发是一种基于敏捷软件开发的方法。它能够鼓励开发人员、业务参与者和QA人员,三者之间的协作。Python测试框架Behave允许团队避开各种复杂的情况,去执行BDD测试。从本质上说该框架与SpecFlow和Cucumber相似,常被用于执行自动化测试。用户可以通过简单易读的语言来编写测试用例,并能够在其执行期间粘贴到代码之中。而且,那些被设定的行为规范与步骤,也可以被重用到其他的测试方案中。
任何具备Python基础知识的人都可以使用Behave。其他先决条件还包括:先安装Python 2.7.14及以上的版本。通过Python包管理器或pip来与Behave协作。大多数开发人员会选择Pycharm作为开发环境,当然您也可以选用其他的IDE工具。
五、Lettuce
Lettuce是另一种基于Cucumber和Python的行为驱动类自动化工具。Lettuce主要专注于那些具有行为驱动开发特征的普通任务。它不但简单易用,而且能够使得整个测试过程更流畅、甚至更有趣。安装带有IDE的Python 2.7.14、及以上的版本。当然,您也可以使用Pycharm或任何其他IDE工具。同时,您还需要安装Python包管理器。
㈩ python怎么做接口测试工具
之前使用过urllib和urllib2做接口测试,在做的途中,感觉使用urllib2直接进行的get,post 请求并没有那么好用。作为测试人员,所需要的测试工具应当以方便为第一要务,测试的耗时只要是真正的无人值守,耗时不是太久的都可以接受。所以,本人又尝试了一个新的包:requests。
Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库。它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTTP 测试需求。Requests 的哲学是以 PEP 20 的习语为中心开发的,所以它比 urllib 更加 Pythoner。更重要的一点是它支持 Python3 !推荐一篇文章,上面有该包的详细说明传送门,以下只会写到我用到的部分,所以更多的了解需要自己去搜资料
好了,我们开始吧!!
接口测试中重要的部分:
1.get和post方法
2.用到的参数
3.请求头
4.cookie
5.日志输出
6.如何调试你的程序--借助fiddler
按照以上的顺序,我将一一说明我的搞法,因为编码能力有限,所以可能看着很low
一、get和post
requests包很好的实现了post和get方法,示例:
1 import requests2 response_get = requests.get(url, data, headers, cookies)3 response_post = requests.post(url, data, headers, cookies)
其他的访问方式如put,head等等,用法几乎都是如此,因为没用到,所以省略
现在一般的接口返回值有页面和json俩种,按照需求,可以分别使用response.text或者response.content获取,text获取的是unicode类型的返回值,而content返回值是str类型,所以我一般使用content来获取返回值,因为这样获取的返回值可以直接使用正则或者in的方式来验证返回值结果是否正确。
我自己为了实现接口的自动访问,所以又在requests上面加了一层封装,就像下面这样:
三、cookie
一款产品的接口测试中必定会使用登录状态,需要使用cookie实现,之前写过使用cookiejar获取cookie,requests中获取cookie的方法更为简单,不过首先你得知道是哪个接口set了cookie,不过一般是登录啦。登录接口访问之后set了cookie,那好,就去调用登录接口,然后拿到搞回来的cookie:
# 只需要这样!!login = requests.post(login_url, data=login_data, headers=login_header)
cookie = login.cookies
这个cookie就是登录状态了,拿着随便用,需要登录的就直接cookies=cookies
四、日志输出
这里注意看第二步中接口数据,有接口描述,也有接口是啥,第一步中又把content做成返回值了,具体拼接方式自己想吧,东西全有了,想写啥写啥,还可以加上获取本地时间的api获取接口运行时间,log文件该长啥样是门学问,这里就不献丑了。
五、借用fiddler调试你的脚本
requests允许使用代理访问,这有啥用,真有!fiddler是一款截包改包的工具,而且通过扩展可以进行请求间的比对,这样让你的程序访问的请求和真正正确的请求作对比,为啥我的程序访问出错?是不是缺了请求头?参数是不是丢了?cookie是不是少了?很容易看出来。写法如下:
proxies = { "http": "http://127.0.0.1:8888", "https": "http://127.0.0.1:8888"}
requests.post(url, proxies=proxies)
这样就可以走代理了,除fiddler以外还有charles和burp suite可以使用,具体看个人喜好吧。