pythonbayes
贝叶斯分类算法的设计与实现 求源码 最好能处理图像型垃圾邮件
‘贰’ 怎么使用贝叶斯决策在python中运行
不是版本的问题 ,有两种可能 1,你的可能前面不用 加 python的 2,你把你的2.6.2卸载调,再装一次
‘叁’ 如何用python编译贝叶斯分类
可以做分类。通常是做文本分类。 在此基础上做邮件的垃圾邮件过滤。还有自动识别效果也不错。 这是一个常见的算法。而且用处挺多的。 在语言分析里常用。比如:我有一组文件,想自动分成不同的类别。 再比如我有一个文章,想根据内容,
‘肆’ Python有没有支持贝叶斯网络的包
Bayesian-belief-networks允许你用纯Python创建贝叶斯信念网络和其他图模型,目前支持四种不同的推理方法。
支持的图模型
离散变量的贝叶斯信念网络
有着高斯分布的连续变量的高斯贝叶斯网络
推理引擎
消息传递和联合树算法(Junction Tree Algorithm)
和积算法(The Sum Proct Algorithm)
MCMC采样的近似推理
高斯贝叶斯网络中得Exact Propagation!
‘伍’ python 朴素贝叶斯分类器有哪些
为了能够处理Unicode数据,同时兼容Python某些内部模块,Python 2.x中提供了Unicode这种数据类型,通过decode和encode方法可以将其它编码和Unicode编码相互转化,但同时也引入了UnicodeDecodeError和UnicodeEncodeError异常。
‘陆’ python 朴素贝叶斯怎样获得 概率结果
朴素:特征条件独立 贝叶斯:基于贝叶斯定理 根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是 p(y|x)=p(x|y)p(y)p(x) 在这里,x是一个特征向量,将设x维度为M。
‘柒’ python贝叶斯思维这本书,看不懂啊,是不是要把他的模块里的东西看一遍
看不懂的话 还是从更基础的看起吧
循序渐进一点点的慢慢来