当前位置:首页 » 编程语言 » python处理图片

python处理图片

发布时间: 2022-01-14 22:37:27

python如何图像识别

首先,先定位好问题是属于图像识别任务中的哪一类,最好上传一张植物叶子的图片。因为目前基于深度学习的卷积神经网络(CNN)确实在图像识别任务中取得很好的效果,深度学习属于机器学习,其研究的范式,或者说处理图像的步骤大体上是一致的。

1、第一步,准备好数据集,这里是指,需要知道输入、输出(视任务而定,针对你这个问题,建议使用有监督模型)是什么。你可以准备一个文件夹,里面存放好植物叶子的图像,而每张图像对应一个标签(有病/没病,或者是多类别标签,可能具体到哪一种病)。
具体实现中,会将数据集分为三个:训练集(计算模型参数)、验证集(调参,这个经常可以不需要实现划分,在python中可以用scikit-learn中的函数解决。测试集用于验证模型的效果,与前面两个的区别是,模型使用训练集和验证集时,是同时使用了输入数据和标签,而在测试阶段,模型是用输入+模型参数,得到的预测与真实标签进行对比,进而评估效果。
2、确定图像识别的任务是什么?

图像识别的任务可以分为四个:图像分类、目标检测、语义分割、实例分割,有时候是几个任务的结合。
图像分类是指以图像为输入,输出对该图像内容分类的描述,可以是多分类问题,比如猫狗识别。通过足够的训练数据(猫和狗的照片-标签,当然现在也有一系列的方法可以做小样本训练,这是细节了,这里并不敞开讲),让计算机/模型输出这张图片是猫或者狗,及其概率。当然,如果你的训练数据还有其它动物,也是可以的,那就是图像多分类问题。
目标检测指将图像或者视频中的目标与不感兴趣的部分区分开,判断是否存在目标,并确定目标的具体位置。比如,想要确定这只狗所佩戴的眼睛的位置,输入一张图片,输出眼睛的位置(可视化后可以讲目标区域框出来)。

看到这里,应该想想植物叶子诊断疾病的问题,只需要输入一整张植物叶子的图片,输出是哪种疾病,还是需要先提取叶子上某些感兴趣区域(可能是病变区域),在用病变区域的特征,对应到具体的疾病?
语义分割是当今计算机视觉领域的关键问题之一,宏观上看,语义分割是一项高层次的任务。其目的是以一些原始图像作为输入,输出具有突出显示的感兴趣的掩膜,其实质上是实现了像素级分类。对于输入图片,输出其舌头区域(注意可以是不规则的,甚至不连续的)。

而实例分割,可以说是在语义分割的基础上,在像素层面给出属于每个实例的像素。

看到这里,可以具体思考下自己的问题是对应其中的哪一类问题,或者是需要几种任务的结合。

3、实际操作
可以先通过一个简单的例子入手,先了解构建这一个框架需要准备什么。手写数字识别可以说是深度学习的入门数据集,其任务也经常作为该领域入门的案例,也可以自己在网上寻找。

❷ Python 读取文件夹将里面的图片处理成想要的大小并保存在个指定位置

fromPILimportImage
importos.path
importglob
defconvertjpg(jpgfile,outdir,width=1280,height=720):
img=Image.open(jpgfile)
new_img=img.resize((width,height),Image.BILINEAR)
new_img.save(os.path.join(outdir,os.path.basename(jpgfile)))
forjpgfileinglob.glob("D:/python/*.jpg"):
convertjpg(jpgfile,"D:/newfile")

convertjpg调用时可以有四个参数,如convertjpg(jpgfile,"D:/newfile",800,600)

Image open了jpg用完后要不要close?

❸ 怎样利用Python进行图片分析

fromPILimportImage###此处为导出包,注意字母大小写
importos,os.path

#指明被遍历的文件夹
rootdir=os.path.abspath(os.curdir)+'/Image/'
rootdir1=os.path.abspath(os.pardir)+"/Image/"

#打包用
ifos.path.isdir(rootdir):
pass
else:
rootdir=rootdir1

size=315,560
i=0

forparent,dirnames,filenamesinos.walk(rootdir):
forfilenameinfilenames:
infile=os.path.join(parent,filename)
im=Image.open(infile)###此处Image.open(dir)为多数对象应用的基础.
im.thumbnail(size)###此处size为长度为2的tuple类型,改变图片分辨率
im.save(infile)###im.save(dir),图片处理的最后都用这个,就是保存处理过后的图片
i+=1
print(i,"Done")

要用pil包 安装如下:pipinstallpillow

❹ python可以用来处理图像吗

可以的,
PythonWare公司提供了免费的Python图像处理工具包PIL(Python Image Library),该软件包提供了基本的图像处理功能,如:

改变图像大小,旋转图像,图像格式转换,色场空间转换,图像增强,直方图处理,插值和滤波等等。虽然在这个软件包上要实现类似MATLAB中的复杂的图像处理算法并不太适合,但是Python的快速开发能力以及面向对象等等诸多特点使得它非常适合用来进行原型开发。

在PIL中,任何一副图像都是用一个Image对象表示,而这个类由和它同名的模块导出,因此,最简单的形式是这样的:

import Image img = Image.open(“dip.jpg”)
注意:第一行的Image是模块名;第二行的img是一个Image对象;
Image类是在Image模块中定义的。关于Image模块和Image类,切记不要混淆了。现在,我们就可以对img进行各种操作了,所有对img的
操作最终都会反映到到dip.img图像上。

PIL提供了丰富的功能模块:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模块是
Image,ImageDraw,ImageEnhance这三个模块。下面我对此分别做一介绍。关于其它模块的使用请参见说明文档.有关PIL软件包和
相关的说明文档可在PythonWare的站点www.Pythonware.com上获得。

Image模块:

Image模块是PIL最基本的模块,其中导出了Image类,一个Image类实例对象就对应了一副图像。同时,Image模块还提供了很多有用的函数。

(1)打开一文件:
import Image img = Image.open(“dip.jpg”)

这将返回一个Image类实例对象,后面的所有的操作都是在img上完成的。

(2)调整文件大小:

import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")

原来的图像大小是256x256,现在,保存的new_img.jpg的大小是128x128。

就是这么简单,需要说明的是Image.BILINEAR指定采用双线性法对像素点插值。

在批处理或者简单的Python图像处理任务中,采用Python和PIL(Python Image Library)的组合来完成图像处理任务是一个很不错的选择。设想有一个需要对某个文件夹下的所有图像将对比度提高2倍的任务。用Python来做将是十分简单的。当然,我也不得不承认Python在图像处理方面的功能还比较弱,显然还不适合用来进行滤波、特征提取等等一些更为复杂的应用。我个人的观点是,当你要实现这些“高级”的算法的时候,好吧,把它交给MATLAB去完成。但是,如果你面对的只是一个通常的不要求很复杂算法的图像处理任务,那么,Python图像处理应该才是你的最佳搭档。

❺ 怎样使用Python图像处理

Python图像处理是一种简单易学,功能强大的解释型编程语言,它有简洁明了的语法,高效率的高层数据结构,能够简单而有效地实现面向对象编程,下文进行对Python图像处理进行说明。
当然,首先要感谢“恋花蝶”,是他的文章“用Python图像处理 ” 帮我坚定了用Python和PIL解决问题的想法,对于PIL的一些介绍和基本操作,可以看看这篇文章。我这里主要是介绍点我在使用过程中的经验。
PIL可以对图像的颜色进行转换,并支持诸如24位彩色、8位灰度图和二值图等模式,简单的转换可以通过Image.convert(mode)函数完 成,其中mode表示输出的颜色模式。例如''L''表示灰度,''1''表示二值图模式等。
但是利用convert函数将灰度图转换为二值图时,是采用固定的阈 值127来实现的,即灰度高于127的像素值为1,而灰度低于127的像素值为0。为了能够通过自定义的阈值实现灰度图到二值图的转换,就要用到 Image.point函数。
深度剖析Python语法功能
深度说明Python应用程序特点
对Python数据库进行学习研究
Python开发人员对Python经验之谈
对Python动态类型语言解析

Image.point函数有多种形式,这里只讨论Image.point(table, mode),利用该函数可以通过查表的方式实现像素颜色的模式转换。其中table为颜色转换过程中的映射表,每个颜色通道应当有256个元素,而 mode表示所输出的颜色模式,同样的,''L''表示灰度,''1''表示二值图模式。
可见,转换过程的关键在于设计映射表,如果只是需要一个简单的箝位值,可以将table中高于或低于箝位值的元素分别设为1与0。当然,由于这里的table并没有什么特殊要求,所以可以通过对元素的特殊设定实现(0, 255)范围内,任意需要的一对一映射关系。
示例代码如下:
import Image # load a color image im = Image.open(''fun.jpg'') # convert to grey level image Lim = im.convert(''L'') Lim.save(''fun_Level.jpg'') # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ''1'') bim.save(''fun_binary.jpg'')

IT部分通常要完成的任务相当繁重但支撑这些工作的资源却很少,这已经成为公开的秘密。任何承诺提高编码效率、降低软件总成本的IT解决方案都应该进行 周到的考虑。Python图像处理所具有的一个显着优势就是可以在企业的软件创建和维护阶段节约大量资金,而这两个阶段的软件成本占到了软件整个生命周期中总成本 的50%到95%。
Python清晰可读的语法使得软件代码具有异乎寻常的易读性,甚至对那些不是最初接触和开发原始项目的程序员都 能具有这样的强烈感觉。虽然某些程序员反对在Python代码中大量使用空格。
不过,几乎人人都承认Python图像处理的可读性远胜于C或者Java,后两 者都采用了专门的字符标记代码块结构、循环、函数以及其他编程结构的开始和结束。提倡Python的人还宣称,采用这些字符可能会产生显着的编程风格差 异,使得那些负责维护代码的人遭遇代码可读性方面的困难。转载

❻ python处理图像何时要将图像转化为uint8格式uint8是什么用array()方法打开图像后图像是什么格式

1. uint8是无符号八位整型,表示范围是[0, 255]的整数

2. Python处理图像个人主要推荐下面两种

a) PIL (pip install pillow),这个比较原生,并且处理过程中一直是uint8

fromPILimportImage
importnumpyasnp
im=Image.open('test.jpg')#从读入就是uint8
npim=np.array(im)#转换成numpyarray处理

b) cv2 (pip install opencv-python),opencv的python实现

importcv2
im=cv2.imread('test.jpg')#读入默认是uint8格式的numpyarray

一般情况直接用uint8即可,若是有需求(如神经网络等),可以转换成浮点数等形式。如果需要转回PIL的图像对象,那就必须是uint8的格式。如果一直用cv2的话,也可以直接保存浮点数形式的(注意是0~255,不是0~1)。

❼ 使用python PIL处理图片。怎么获取图片的像素数据

importimage
importsys
img=image.open("图片位置")
width=img.size[0]
height=img.size[1]
forwinrange(width):
forhinrange(height):
pixel=img.getpixel(w,h)
printpixel

#width,height是图片的宽度与长度
#pixel是像素值

❽ python怎么打开图片

使用python进行数字图片处理,可以使用pillow包,它是由PIL fork发展而来的。使用时需要import从PIL fork中导出。同时使用open()函数来打开图片,使用show()函数来显示图片。

❾ python图像处理如何去掉图片中的铁丝网

介绍三种方法(也就是你说得功能)

1、使用仿制图章工具去除

2、使用修补工具去除

3、使用修复画笔工具去除

试试吧,祝你成功!

❿ python批量处理图片

用生成器,每次生成一批处理

热点内容
scss一次编译一直生成随机数 发布:2024-12-22 22:04:24 浏览:954
嫁接睫毛加密 发布:2024-12-22 21:50:12 浏览:972
linuxbin文件的安装 发布:2024-12-22 21:46:07 浏览:796
vlcforandroid下载 发布:2024-12-22 21:45:26 浏览:662
电脑做网关把数据发送至服务器 发布:2024-12-22 21:44:50 浏览:429
新华三代理什么牌子的服务器 发布:2024-12-22 21:33:21 浏览:340
欢太会员密码是什么 发布:2024-12-22 20:57:28 浏览:71
sqllocaldb 发布:2024-12-22 20:07:08 浏览:123
如何找到我的服务器 发布:2024-12-22 19:52:14 浏览:299
手挂机脚本游 发布:2024-12-22 19:38:00 浏览:429