python资源大全
⑴ 求python3的免费资源。。。。!!!
可以网络下“Python资源大全”,说再多就有可能违规了
⑵ 推荐几个学习Python的免费网站
1、Python @ Coursera
Pythonspot是一个综合教程,划分了很多不同类别的知识板块,首先你将拥有初学者资源来帮你开始Python的学习,然后你继续保持前进你能学到更多关于使用Python开发web等。
⑶ Python 有哪些好的学习资料或者博客
1、无开发经验,初学python
如果你不会其他语言,python是你的第一门语言:
A Byte of Python (简明python教程,这个有中文版简明 Python 教程)是非常好的入门教程。
Learn Python the Hard Way (Zed Shaw的免费教程,个人强烈推荐)
Python, Django and Flask教程: Real Python (收费,需购买)
short 5 minute video 解释了为什么你的出发点应该是要完成什么项目,或者解决什么问题,而不是为了学一门语言而去学一门语言。
Dive into Python 3 是一本开源的python教程,提供HTML和PDF版。
Code Academy 有一个为纯新手准备的 Python track 。
Introction to Programming with Python 介绍了基本语法和控制结构等,提供了大量代码示例。
O'Reilly 的书 Think Python: How to Think Like a Computer Scientist 是非常好的入门教材。
Python Practice Book 是一本python练习的书,帮你掌握python基本语法。
想通过做实际项目来学编程?看看这个 this list of 5 programming project for Python beginners(5个适合python初学者的编程项目)。
Reddit的创造者之一写了一个教程,如何用python构建一个博客网站(use Python to build a blog.),使非常好的web编程入门。
The fullstack python的作者写了一篇关于如何学习python的文章learning Python 。
2、有开发经验 ,初学Python
Learn Python in y minutes ,让你在几分钟内快速上手,有个大概了解。
Python for you and me , python的语法,语言的主要结构等,还包含来Flask Web App的教程。
The Hitchhiker’s Guide to Python
How to Develop Quality Python Code ,如何开发高质量的python代码
⑷ Python培训中有哪些优秀的资源
Python学习的资源有不少,优秀的资源就少了。有一本帮助我很大的就是《疯狂Python讲义》,它既有使用IDLE运行Python程序,也有 Python的关键字和内置函数,还有Python的GUI库 。内容很详细,很容易理解,是一本非常好的一个Python学习的资源。强烈推荐!
⑸ 最受欢迎的 15 大 Python 库有哪些
1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。
2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。
3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。
4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。
5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。
6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。
7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。
8、Scikits:是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。
9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。
10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。
11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。
12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。
13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。
…………
⑹ 常用的python库有哪些
10个顶级且实用的python库
1、Dash
Dash是比较新的软件包,它是用纯python构建数据可视化app的理想选择,因此特别适合处理数据的任何人。Dash是Flask、Plotly.js和React.js的混合体。
2、Pygame
Pygame是SDL多媒体库的python装饰器,SDL是一个跨平台开发库,旨在提供对以下内容的低级接口:音频、键盘、鼠标、游戏杆、基于OpenGL和Direct3D的图形硬件。
Pygame具有高度的可移植性,几乎可以在所有平台和操作系统上运行。尽管它具有完善的游戏引擎,但您也可以使用此库直接从python脚本播放MP3文件。
3、Pillow
Pillow专门用于处理图像,您可以使用该库创建缩略图,在文件格式之间转换、旋转、应用滤镜、显示图像等等。如果您需要对许多图像执行批量操作,这是理想的选择。
4、Colorama
Colorama允许你在终端使用颜色,非常适合python脚本,文档简短而有趣,可以在Colorama PyPi页面上找到。
5、JmesPath
在python中使用JSON非常容易,因为JSON在python字典上的映射非常好。此外,python带有自己出色的json库,用于解析和创建JSON。对我来说,这是它最好的功能之一,如果我需要使用JSON,可以考虑使用python。
JmesPath使python处理JSON更加容易,它允许您明确地指定如何从JSON文档中提取元素。
6、Requests
Requests建立在世界上下载量最大的python库urllib3上,它令Web请求变得非常简单,功能强大且用途广泛。
Requests可以完成您能想到的所有高级工作,比如:认证,使用cookie,执行POST、PUT、DELETE等,使用自定义证书,使用会话Session、使用代理等。
7、Simplejson
python中的本地json模块有什么问题?没有!实际上,python的json是Simplejson。意思是:python采用了Simplejson的一个版本,并将其合并到每个发行版中,但是使用Simplejson具有一些优点:它适用于更多python版本、它比python随附的版本更新频率更高、它具有用C编写的部分,因此非常快速。
8、Emoji
Emoji库非常意思,但并非每个人都喜欢表情包,分析视角媒体数据时,Emoji包非常有用。
9、Python-dateutil
Python-dateutil模块提供了对标准datetime模块的强大扩展。我的经验是:常规的python日期时间功能在哪里结束,而Python-dateutil就出现了。
10、BeautifulSoup
如果您从网站上提取了一些HTML,则需要对其进行解析以获取实际所需的内容。BeautifulSoup是一个python库,用于从HTML和XML文件中提取数据。它提供了导航,搜索和修改解析树的简单方法。它非常强大,即使损坏了,也能够处理各种HTML,这是一个非常强大的功能。
它的一些主要功能:
①BeautifulSoup会自动将传入文档转换为Unicode,将传出文档转换为UTF-8,您无需考虑编码。
②BeautifulSoup位于流行的python解析器的顶部,使您可以尝试不同的解析策略或提高灵活性。
⑺ python哪里有好的学习资源
1、《The Self-Taught Programmer》
本书将你如何将你的日常工作自动化,比如将数据从一个电子表格移动到另一个电子表格。这本书的目标读者是新程序员,对于那些想学习编程以实现生活自动化,但又不打算把软件开发作为职业道路的人来说,这本书尤其有用。
⑻ 寻找Python视频教程
PS软件与教程网络网盘资源旅誉枣免费下载
软件资源实时更新旅誉枣
链接:https://pan..com/s/1DzUSDyE68u_zCpx01E7FpA?pwd=ffh6
密码:ffh6
资源包含:bavi视频素材、pscs6软件和虚渗色盘的插件、PS4人物转拆拆手绘教程ps、安装包+入门教程+高级课程、祁连山、李涛Photoshop高手之路教程、PS课程素材包、PS各版本软虚渗件+教程、Photoshop教程+配套素材、各种Photoshop 中文破解版+破解方法+正版软件+补丁+安装方法,AE PR PS软件安装包,spss教学视频,PS破解器,PS字体包、拆拆矢量素材打包等
⑼ 最常用的几个python库
Python常用库大全,看看有没有你需要的。
环境管理
管理 Python 版本和环境的工具
p – 非常简单的交互式 python 版本管理工具。
pyenv – 简单的 Python 版本管理工具。
Vex – 可以在虚拟环境中执行命令。
virtualenv – 创建独立 Python 环境的工具。
virtualenvwrapper- virtualenv 的一组扩展。
包管理
管理包和依赖的工具。
pip – Python 包和依赖关系管理工具。
pip-tools – 保证 Python 包依赖关系更新的一组工具。
conda – 跨平台,Python 二进制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分发的新标准,意在取代 eggs。
包仓库
本地 PyPI 仓库服务和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。
devpi – PyPI 服务和打包/测试/分发工具。
localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。
分发
打包为可执行文件以便分发。
PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。
dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。
Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。
py2app – 将 Python 脚本变为独立软件包(Mac OS X)。
py2exe – 将 Python 脚本变为独立软件包(Windows)。
pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。
构建工具
将源码编译成软件。
buildout – 一个构建系统,从多个组件来创建,组装和部署应用。
BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。
fabricate – 对任何语言自动找到依赖关系的构建工具。
PlatformIO – 多平台命令行构建工具。
PyBuilder – 纯 Python 实现的持续化构建工具。
SCons – 软件构建工具。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。
imghdr – (Python 标准库)检测图片类型。
mimetypes – (Python 标准库)将文件名映射为 MIME 类型。
path.py – 对 os.path 进行封装的模块。
pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。
python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。
Unipath- 用面向对象的方式操作文件和目录
watchdog – 管理文件系统事件的 API 和 shell 工具
日期和时间
操作日期和时间的类库。
arrow- 更好的 Python 日期时间操作类库。
Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。
dateutil – Python datetime 模块的扩展。
delorean- 解决 Python 中有关日期处理的棘手问题的库。
moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。
PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。
pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。
when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。
文本处理
用于解析和操作文本的库。
通用
chardet – 字符编码检测器,兼容 Python2 和 Python3。
difflib – (Python 标准库)帮助我们进行差异化比较。
ftfy – 让Unicode文本更完整更连贯。
fuzzywuzzy – 模糊字符串匹配。
Levenshtein – 快速计算编辑距离以及字符串的相似度。
pangu.py – 在中日韩语字符和数字字母之间添加空格。
pyfiglet -figlet 的 Python实现。
shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 转换形式 。
uniout – 打印可读的字符,而不是转义的字符串。
xpinyin – 一个用于把汉字转换为拼音的库。