python数学库
⑴ python 常用的标准库以及第三方库有哪些
5个常用的Python标准库:
1、os:提供了不少与操作系统相关联的函数库
os包是Python与操作系统的接口。我们可以用os包来实现操作系统的许多功能,比如管理系统进程,改变当前路径,改变文件权限等。但要注意,os包是建立在操作系统的平台上的,许多功能在Windows系统上是无法实现的。另外,在使用os包中,要注意其中的有些功能已经被其他的包取代。
我们通过文件系统来管理磁盘上储存的文件。查找、删除、复制文件以及列出文件列表等都是常见的文件操作。这些功能通常可以在操作系统中看到,但现在可以通过Python标准库中的glob包、shutil包、os.path包以及os包的一些函数等,在Python内部实现。
2、sys:通常用于命令行参数的库
sys包被用于管理Python自身的运行环境。Python是一个解释器,也是一个运行在操作系统上的程序。我们可以用sys包来控制这一程序运行的许多参数,比如说Python运行所能占据的内存和CPU,Python所要扫描的路径等。另一个重要功能是和Python自己的命令行互动,从命令行读取命令和参数。
3、random:用于生成随机数的库
Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。
4、math:提供了数学常数和数学函数
标准库中,Python定义了一些新的数字类型,以弥补之前的数字类型可能的不足。标准库还包含了random包,用于处理随机数相关的功能。math包补充了一些重要的数学常数和数学函数,比如pi、三角函数等等。
5、datetime:日期和时间的操作库
日期和时间的管理并不复杂,但容易犯错。Python的标准库中对日期和时间的管理颇为完善,你不仅可以进行日期时间的查询和变换,还可以对日期时间进行运算。通过这些标准库,还可以根据需要控制日期时间输出的文本格式。
除此之外,Python还有很多第三方库,了解更多可移步:oldboye
⑵ Python可用于数学计算的第三方函数库除了Python还有什么,可否举例说明
numpy, pandas之类
⑶ python可不可以直接调用函数库,进行数学计算
python还有一个标准库math库,用来进行常用的数据计算。
python math模块:http://hi..com/yinkeju/blog/item/5c5ab1def93f6c54cdbf1a79.html
我引用别人的文章来回答:
python-科学计算1:两个基本的模块的安装与测试
在网上看到了一本《用Python做科学计算的》的书,感觉挺有趣的,就下载下来学习了一下。
但这本书一开始就讲配置环境,Python(X,Y)等东西,我觉得这个反而增加了入门的难度,倒不如一开始就用一些原始的python IDE介绍,
使读者不觉得那么的难。我现在读了25页,要用到本书的例子,就安装两个模块:NumPy,Scipy可以在http://www.scipy.org/ 找到他俩。
http://hi..com/billschen/blog/item/9677b708e64d35c562d986bf.html
⑷ python数学库怎么用
python程序由包(package)、模块(mole)和函数组成。
首先我们要确定python中是否含有math或者numpy?用pycharm,file -> settings->project ->project interpreter -> +号 ->搜索相应的库,若没有则下载
1. pip下载,打开命令行,输入 pip --default-timeout=1000 install -U 库名(如jieba)
2.云盘下载,如果从论坛的云盘分享下载,解压后,打开命令行,cd 解压路径 回车
下载完毕后重启Python,然后编写时以如下两种方式引用库:
import <库名>
from <库名> import *
⑸ python数据分析的包 哪些
IPython
IPython 是一个在多种编程语言之间进行交互计算的命令行 shell,最开始是用 python 开发的,提供增强的内省,富媒体,扩展的 shell
语法,tab 补全,丰富的历史等功能。IPython 提供了如下特性:
更强的交互 shell(基于 Qt 的终端)
一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体
支持交互数据可视化和图形界面工具
灵活,可嵌入解释器加载到任意一个自有工程里
简单易用,用于并行计算的高性能工具
由数据分析总监,Galvanize 专家 Nir Kaldero 提供。
GraphLab Greate 是一个 Python 库,由 C++ 引擎支持,可以快速构建大型高性能数据产品。
这有一些关于 GraphLab Greate 的特点:
可以在您的计算机上以交互的速度分析以 T 为计量单位的数据量。
在单一平台上可以分析表格数据、曲线、文字、图像。
最新的机器学习算法包括深度学习,进化树和 factorization machines 理论。
可以用 Hadoop Yarn 或者 EC2 聚类在你的笔记本或者分布系统上运行同样的代码。
借助于灵活的 API 函数专注于任务或者机器学习。
在云上用预测服务便捷地配置数据产品。
为探索和产品监测创建可视化的数据。
由 Galvanize 数据科学家 Benjamin Skrainka 提供。
Pandas
pandas 是一个开源的软件,它具有 BSD 的开源许可,为 Python
编程语言提供高性能,易用数据结构和数据分析工具。在数据改动和数据预处理方面,Python 早已名声显赫,但是在数据分析与建模方面,Python
是个短板。Pands 软件就填补了这个空白,能让你用 Python 方便地进行你所有数据的处理,而不用转而选择更主流的专业语言,例如 R 语言。
整合了劲爆的 IPyton 工具包和其他的库,它在 Python 中进行数据分析的开发环境在处理性能,速度,和兼容方面都性能卓越。Pands
不会执行重要的建模函数超出线性回归和面板回归;对于这些,参考 statsmodel 统计建模工具和 scikit-learn 库。为了把 Python
打造成顶级的统计建模分析环境,我们需要进一步努力,但是我们已经奋斗在这条路上了。
由 Galvanize 专家,数据科学家 Nir Kaldero 提供。
PuLP
线性编程是一种优化,其中一个对象函数被最大程度地限制了。PuLP 是一个用 Python
编写的线性编程模型。它能产生线性文件,能调用高度优化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,来求解这些线性问题。
由 Galvanize 数据科学家 Isaac Laughlin 提供
Matplotlib
matplotlib 是基于 Python 的
2D(数据)绘图库,它产生(输出)出版级质量的图表,用于各种打印纸质的原件格式和跨平台的交互式环境。matplotlib 既可以用在 python 脚本,
python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 应用服务器,和6类 GUI
工具箱。
matplotlib 尝试使容易事情变得更容易,使困难事情变为可能。你只需要少量几行代码,就可以生成图表,直方图,能量光谱(power
spectra),柱状图,errorcharts,散点图(scatterplots)等,。
为简化数据绘图,pyplot 提供一个类 MATLAB 的接口界面,尤其是它与 IPython
共同使用时。对于高级用户,你可以完全定制包括线型,字体属性,坐标属性等,借助面向对象接口界面,或项 MATLAB 用户提供类似(MATLAB)的界面。
Galvanize 公司的首席科学官 Mike Tamir 供稿。
Scikit-Learn
Scikit-Learn 是一个简单有效地数据挖掘和数据分析工具(库)。关于最值得一提的是,它人人可用,重复用于多种语境。它基于
NumPy,SciPy 和 mathplotlib 等构建。Scikit 采用开源的 BSD 授权协议,同时也可用于商业。Scikit-Learn
具备如下特性:
分类(Classification) – 识别鉴定一个对象属于哪一类别
回归(Regression) – 预测对象关联的连续值属性
聚类(Clustering) – 类似对象自动分组集合
降维(Dimensionality Rection) – 减少需要考虑的随机变量数量
模型选择(Model Selection) –比较、验证和选择参数和模型
预处理(Preprocessing) – 特征提取和规范化
Galvanize 公司数据科学讲师,Isaac Laughlin提供
Spark
Spark 由一个驱动程序构成,它运行用户的 main 函数并在聚类上执行多个并行操作。Spark
最吸引人的地方在于它提供的弹性分布数据集(RDD),那是一个按照聚类的节点进行分区的元素的集合,它可以在并行计算中使用。RDDs 可以从一个 Hadoop
文件系统中的文件(或者其他的 Hadoop 支持的文件系统的文件)来创建,或者是驱动程序中其他的已经存在的标量数据集合,把它进行变换。用户也许想要 Spark
在内存中永久保存 RDD,来通过并行操作有效地对 RDD 进行复用。最终,RDDs 无法从节点中自动复原。
Spark 中第二个吸引人的地方在并行操作中变量的共享。默认情况下,当 Spark
在并行情况下运行一个函数作为一组不同节点上的任务时,它把每一个函数中用到的变量拷贝一份送到每一任务。有时,一个变量需要被许多任务和驱动程序共享。Spark
支持两种方式的共享变量:广播变量,它可以用来在所有的节点上缓存数据。另一种方式是累加器,这是一种只能用作执行加法的变量,例如在计数器中和加法运算中。
⑹ java和python哪个的数学库更强大
它们之间没什么可比性,这是两门不同的开发语言,应用的场景也不一样,基本的数学库来说都是一样的。至于你选择使用java还是python要看你对这两门开发语言的了解和熟练程度,以及你的应用场景。
⑺ Python常用的标准库以及第三方库有哪些
Python常用的标准库有http库。第三方库有scrapy,pillow和wxPython.以下有介绍:
Requests.Kenneth Reitz写的最富盛名的http库,每个Python程序员都应该有它。
Scrapy.如果你从事爬虫相关的工作,那么这个库也是必不可少的。用过它之后你就不会再想用别的同类库了。
wxPython.Python的一个GUI(图形用户界面)工具。我主要用它替代tkinter。
Pillow.它是PIL的一个友好分支。对于用户比PIL更加友好,对于任何在图形领域工作的人是必备的库。
⑻ python有什么用
python的作用:
1、系统编程:提供API(Application Programming。
2、图形处理:有PIL、Tkinter等图形库支持,能方便进行图形处理。
3、数学处理:NumPy扩展提供大量与许多标准数学库的接口。
4、文本处理:python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。
5、数据库编程:程序员可通过遵循Python DB-API(数据库应用程序编程接口)规范的模块与Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。
6、网络编程:提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet。