python量化日记
⑴ python量化投资是什么
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。
python是一种编程语言,python量化投资也就是通过使用Python编写能够发出买卖指令的程序来交易。
⑵ python量化交易半个月可以学会吗
python量化交易半个月可以学会的。
如果已经有了Python基础,半个月可以入门的,如果没有Python基础,就先学Python,学一两个月有了基础后,再结合量化交易的模型,边学Python语言,边学以Python实现量化模型,上手也会很快的。
大家可能觉得搞量化的人就是整天和大量数据打交道,用一行行代码写出复杂的模型,然后没完没了地Run,在回测和优化中挣扎,沉浸在数学和统计海洋里的一群人。
实际上,这只是表面现象。虽然每个搞量化的人必须会写代码,也必须具备扎实的数学功底,在开发策略的过程中,的确需要分析大量数据,不断做回测和优化,但是,这一切的背后是强大的金融思维和对金融市场的深刻理解在支撑的。
换句话说,如果你没有经济、金融的完整知识体系和工作经验,或者没有正确的、科学的思维方式,无论数学多么地好,也很可能在做无用功;即便编程多么在行,也只能沦为码农一枚(没有歧视程序员的意思哦)。
反过来说,如果你具备科学的思维和逻辑,并发现了经济、金融的某些规律,想做Quant就不难了。接下来,你只需花点时间学习编程工具,好好利用数据和代码为你实现自己的想法。
⑶ python 为什么适合做量化
python是一个完全面对对象的可脚本,可二进制编译运行的高级语言。一般以脚本方式运行,运行调试完可生成二进制代码来保证运行的速度。代码非常简洁
拥有无与伦比的配套标准库。一般广泛用于各种领域。尤其在科学界流行。
在python环境下,有科学运算库,界面库,各种算法库。非常适合用于科学研究。
matlab中的金融工具虽然比较全面,也比较好用,不过像我这种喜欢搞些新算法。同时还要和交易接口编程的就非常喜爱python了。
python的算法库 :numpy ,scipy等,用于统计的库。
python的数据可视化库 matplotlib(上面那个贴图就是例子),PyQt,pygtk,pyside等等,前面说的都是二维的。三维的VTK等等。
而且今后和CTP等交易平台对接的话,matlab就无能为力了,到时候再学python岂不是晚了。
⑷ 如何用python量化交易
用Python来进行量化交易大多是只能在平台上进行量化分析,具体到实际投资上很少的。
⑸ python 离散型数据怎么量化
python 离散型数据量化的方法可以采用变量转换方法来解决,分类数据和连续数据需要参与模型计算,并且通常会转换为数值数据。
当然,某些算法允许这些数据直接参与计算,例如分类算法中的决策树和关联规则。将非数字数据转换为数字数据的最佳方法是将所有类别或有序变量的范围从一列多值形式转换为仅包含真值的多列。可以将True值传递给True,False或0、1。这种符号转换方法有时称为真值转换。
具体代码是:
import pandas as pddata = [.
['yellow', 'S', 10.1, 'class1'].
['red', 'M', 13.5, 'class1'].
['red', 'M', 15.1, 'class2'].
['blue', 'XL', 15.3, 'class2'.
df = pd.DataFrame(.
data,columns=['color', 'size', 'prize', 'class'].
python 离散型数据用连续数据处理的方法是:
1、等宽法:若数据区间为0~20,设置箱子个数为4个,则等宽法会将数据装入4个箱子:[0,5],(5,10],(10,15],(15,20],并且可以设置每个箱子的名字,如1、2、3、4。
等宽法缺点是分箱结果会受到最值影响。并且需要人为指定箱子个数,比较依赖于经验。分箱结果会直接影响后续分类、聚类的结果。
2、等频法:等频法是指将一组数据分解成n个部分后,每个部分的记录数量是一样多的。等频法常用pandas库中的qcut()函数进行处理。
⑹ 怎么学习python量化交易
下面教你八步写个量化交易策略——单股票均线策略
1 确定策略内容与框架
若昨日收盘价高出过去20日平均价今天开盘买入股票
若昨日收盘价低于过去20日平均价今天开盘卖出股票
只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?
想想人是怎么操作的,应该包括这样两个部分
既然是单股票策略,事先决定好交易哪一个股票。
每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。
对应代码也是这两个部分
definitialize(context):
用来写最开始要做什么的地方
defhandle_data(context,data):
用来写每天循环要做什么的地方
2 初始化
我们要写设置要交易的股票的代码,比如 兔宝宝(002043)
definitialize(context):
g.security='002043.XSHE'#存入兔宝宝的股票代码
3 获取收盘价与均价
首先,获取昨日股票的收盘价
#用法:变量=data[股票代码].close
last_price=data[g.security].close#取得最近日收盘价,命名为last_price
然后,获取近二十日股票收盘价的平均价
#用法:变量=data[股票代码].mavg(天数,‘close’)
#获取近二十日股票收盘价的平均价,命名为average_price
average_price=data[g.security].mavg(20,'close')
4 判断是否买卖
数据都获取完,该做买卖判断了
#如果昨日收盘价高出二十日平均价,则买入,否则卖出
iflast_price>average_price:
买入
eliflast_price<average_price:
卖出
问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。
#用法:变量=context.portfolio.cash
cash=context.portfolio.cash#取得当前的现金量,命名为cash
5 买入卖出
#用法:order_value(要买入股票股票的股票代码,要多少钱去买)
order_value(g.security,cash)#用当前所有资金买入股票
#用法:order_target(要买卖股票的股票代码,目标持仓金额)
order_target(g.security,0)#将股票仓位调整到0,即全卖出
6 策略代码写完,进行回测
把买入卖出的代码写好,策略就写完了,如下
definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔宝宝
defhandle_data(context,data):#每日循环
last_price=data[g.security].close#取得最近日收盘价
#取得过去二十天的平均价格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得当前的现金
#如果昨日收盘价高出二十日平均价,则买入,否则卖出。
iflast_price>average_price:
order_value(g.security,cash)#用当前所有资金买入股票
eliflast_price<average_price:
order_target(g.security,0)#将股票仓位调整到0,即全卖出
现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。
7 建立模拟交易,使策略和行情实时连接自动运行
策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。 写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。
8 开启微信通知,接收交易信号
点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。 点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。
⑺ 用python做量化交易要学多久
5个月。
python凭借其突出的语言优势与特性,已经融入到各行各业的每个领域。一般来说,python培训需要脱产学习5个月左右,这样的时长才能够让学员既掌握工作所需的技能,还能够积累一定的项目经验。当然如果你想要在人工智能的路上越走越远,则需要不断的积累和学习。
python培训的5个月时间里,有相当大一部分时间是在实战做项目,第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编程思想。学完这一阶段的内容,学员已经能够胜任python初级开发工程师的职位。
(7)python量化日记扩展阅读:
Python开发基础课程内容包括:计算机硬件、操作系统原理、安装linux操作系统、linux操作系统维护常用命令、Python语言介绍、环境安装、基本语法、基本数据类型、二进制运算、流程控制、字符编码、文件处理、数据类型、用户认证、三级菜单程序、购物车程序开发、函数、内置方法、递归、迭代器、装饰器、内置方法、员工信息表开发、模块的跨目录导入、常用标准库学习,b加密 e正则logging日志模块等,软件开发规范学习,计算器程序、ATM程序开发等。
⑻ 用Python怎么做量化投资
本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出
其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还要选择回测平台。
一、数据
首先,必须是数据,数据是量化投资的基础
如何得到数据?
Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软件的借口,Excel,Matlab,Python,C++。
预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式
TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源
TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取
如何存储数据?
Mysql
如何预处理数据?
空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数
数据标准化
数据如何分类?
行情数据
财务数据
宏观数据
二、计算语言&软件
已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python
python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:
Numpy&Scipy:科学计算库,矩阵计算
Pandas:金融数据分析神器,原AQR资本员工写的一个库,处理时间序列的标配
Matplotlib:画图库
scikit-learn:机器学习库
statsmodels:统计分析模块
TuShare:免费、开源的python财经数据接口包
Zipline:回测系统
TaLib:技术指标库
matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化
python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算
Matplotlib完克Matlab的画图功能
python还有很多其他的功能
pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化
推荐的python学习文档和书籍
关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。
涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程
pandas文档
statsmodels文档
scipy和numpy文档
matplotlib文档
TuShare文档
第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的
三、回测框架和网站
两个开源的回测框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library
⑼ 用python怎么做量化投资
我目前也在学习量化,现在在学习Python,还有一些具体的模型,太多了!没事可以多交流
⑽ 怎么学习python量化交易
找一些含有Python量化分析、Python量化交易的教程,跟着学一学,如果自学难度大,可以报班学习,反正办法总比困难多!