python中numpy
‘壹’ python里怎样装numpy
因为对机器学习算法进行实战的话,python语言是必须的,所以前几天进行了安装和配置。说实话,相比较其他的编程语言的IDE来讲,python本身问题不大,但是因为要有很多的矩阵的计算,所以要安装numpy包!但是这个过程在我的电脑上出现了比较大的问题,所以,将这一过程记录下来,万一以后电脑出现了问题重新安装的话还能做参考!!
声明电脑配置: win7 64位
python安装版本:Python 2.7 (也可以是python3.x 本人不习惯用最新的版本,所以选择了2.7)
1.下载 对应版本numpy 的.whl文件 (注意:我的电脑确实是64位的,而且python也安装的64位版本的,但是在之后的命令行安装的时候压根安装不了64位的,到后面再说)
http://www.lfd.uci.e/~gohlke/pythonlibs/
‘贰’ 问一下Python里的numpy的正确读法是什么
numpy读法是:英['nʌmpi],NumPy是Python中科学计算的基础包。
它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种例程,包括数学逻辑,形状操作,I / O离散傅立叶变换,随机模拟等等。
NumPy包的核心是ndarray对象。这封装了同构数据类型的n维数组,许多操作在编译代码中执行以提高性能。
NumPy数组和标准Python序列之间有几个重要的区别:
1、NumPy数组在创建时具有固定大小,与Python列表(可以动态增长)不同。更改ndarray的大小将创建一个新数组并删除原始数组。
2、NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。例外:可以有(Python,包括NumPy)对象的数组,从而允许不同大小的元素的数组。
3、NumPy数组有助于对大量数据进行高级数学和其他类型的操作。通常,与使用Python的内置序列相比,这些操作的执行效率更高,代码更少。
4、越来越多的基于Python的科学和数学软件包正在使用NumPy数组;虽然这些通常支持Python序列输入,但它们在处理之前将这些输入转换为NumPy数组,并且它们通常输出NumPy数组。
‘叁’ 如何在python中安装numpy
命令行输入python,然后输入importnumpy
‘肆’ python怎样引用numpy
numpy是python的一个科学计算的库,提供了矩阵运算的功能,一般与scipy、matplotlib一起使用。
导入numpy的范例如下:
>>>import numpy as np
>>>print np.version.version
1.6.2
‘伍’ python中的,numpy 和 ndarray怎么读
这种同时读取是不行的,可以将文件所有数据读入内存,然后处理。解决方法如下:
1、首先在进行之前,必须要先引入numpy模块。
‘陆’ python中numpy 有哪些内容
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那么numpy很好入手。
‘柒’ Python基础 numpy中的常见函数有哪些
有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。
数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a
数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合
数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组
数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组
数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型
数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和
以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。
‘捌’ python numpy有什么用
NumPyis the fundamental package for scientific computing withPython。就是科学计算包。
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
NumPy系统是Python的一种开源的数字扩展。这种工具可用来存储和处理矩阵,比Python自身的嵌套列表结构要高效。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。
‘玖’ python numpy是什么库
NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库!
相关推荐:《Python基础教程》
NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:
·一个强大的N维数组对象ndrray;
·比较成熟的(广播)函数库;
·用于整合C/C++和Fortran代码的工具包;
·实用的线性代数、傅里叶变换和随机数生成函数。
NumPy的优点:
·对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多;
·NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的;
·NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多。
当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。