当前位置:首页 » 编程语言 » python数据可视化教程

python数据可视化教程

发布时间: 2022-08-02 21:56:38

A. python 怎样数据可视化 3d

准备工作

基本来讲,我们仍然需要创建一个图表并把想要的坐标轴添加到上面。但不同的是我们为图表指定的是3D视图,并且添加的坐标轴是Axes3D。

现在,我们可以使用几乎相同的函数来绘图了。当然,函数的参数是不同的,需要为3个坐标轴提供数据。

例如,我们要为函数mpl_toolkits.mplot3d.Axes3D.plot指定xs、ys、zs和zdir参数。其他的参数则直接传给matplotlib.axes.Axes.plot。下面来解释一下这些特定的参数。

1.xs和ys:x轴和y轴坐标。

2.zs:这是z轴的坐标值,可以是所有点对应一个值,或者是每个点对应一个值。

3.zdir:决定哪个坐标轴作为z轴的维度(通常是zs,但是也可以是xs或者ys)。

提示:模块mpl_toolkits.mplot3d.art3d包含了3D artist代码和将2D artists转化为3D版本的函数。在该模块中有一个rotate_axes方法,该方法可以被添加到Axes3D中来对坐标重新排序,这样坐标轴就与zdir一起旋转了。zdir默认值为z。在坐标轴前加一个'``-``'会进行反转转换,这样一来,zdir的值就可以是x、-x、y、-y、z或者-z。

操作步骤

以下代码演示了我们所解释的概念。
import random

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['font.size'] = 10

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

for z in [2011, 2012, 2013, 2014]:
xs = xrange(1,13)
ys = 1000 * np.random.rand(12)

color =plt.cm.Set2(random.choice(xrange(plt.cm.Set2.N)))
ax.bar(xs, ys, zs=z, zdir='y', color=color, alpha=0.8)

ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))
ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))

ax.set_xlabel('Month')
ax.set_ylabel('Year')
ax.set_zlabel('Sales Net [usd]')

plt.show()

B. 如何评价利用python制作数据采集,计算,可视化界面呢

先来设置两个url地址,第一个用于第一次访问,这样可以获得网站服务器发来的cookie,第二个网址是用于登陆的地址
引入两个模块,cookielib和urllib2
接着,我们安装一个cookie处理器,代码如下,这个代码很多人不太能读懂,其实你会用就可以了,他们就是这个固定的形式,顶多改改变量的名字。你复制下来以后自己用就可以了,用多了,你再去看代码的意义,你就都懂了。
然后我们先访问一下网站,获得一个cookie,你不用管这个cookie该怎么弄,前面设置的cookie处理器会自动处理。
接着,我们写一下postdata,也就是你要post的数据,因为我们打算登陆网站,所以postdata里肯定有用户名和密码,那么怎么知道该怎么写postdata呢?看你抓包得到的post数据。下面第一幅图是httpwatch抓包截图,点击postdata,看到post的数据,然后我们看第二幅图,就是python的写法。你自己感受一下。
写完postdata以后,我们 要将postdata转码一下,让服务器可以解读postdata数据
接着设置headers信息,headers也是抓包得到的。同样的方式,你去写header内的信息
然后我们通过request方法来登陆网站,并返回数据,返回的数据存储在request中
通过rulopen方法和read方法来读取数据,并打印出来。
我们看到输出的结果,这说明我们虽然正确的模拟了登陆网站需要的post信息,但是没有考虑到登陆网站是需要验证码的,后期我们会看到如何处理验证码,如果你拿这个教程去处理没有验证码的登陆问题,那么你现在已经成功了。

C. python可视化

不会就去学啊,先找Python文本读取的例子,再找可视化模块。
编程,自己不码代码,那还不如不学,学也白学的。

D. Python中除了matplotlib外还有哪些数据可视化的库

数据可视化是展示数据、理解数据的有效手段,常用的Python数据可视化库如下:
1.Matplotlib:第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
2.Seaborn:利用Matplotlib,用简洁的代码来制作好看的图表,与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
3.ggplot:基于R的一个作图库的ggplot2,同时利用了源于《图像语法》中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
4.Bokeh:与ggplot很相似,但与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
5.Plotly:可以通过Python notebook使用,与bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
6.pygal:与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
7.geoplotlib:用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图等,必须安装Pyglet方可使用。
8.missingno:用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。

E. Python中数据可视化的两个库!

1、Matplotlib

Matplotlib是最全面的Python数据可视化库。

有人认为Matplotlib的界面很难看,但笔者认为,作为最基础的Python数据可视化库,Matplotlib能为使用者的可视化目标提供最大的可能性。

使用JavaScript的开发者们也有各自偏好的可视化库,但当所处理的任务中涉及大量不被高级库所支持的定制功能时,开发者们就必须用到D3.js。Matplotlib也是如此。

2、Plotly

虽然坚信要进行数据可视化,就必须得掌握Matplotlib,但大多数情况下读者更愿意使用Plotly,因为使用Plotly只需要写最少的代码就能得出最多彩缤纷的图像。

无论是想构造一张3D表面图,或是一张基于地图的散点图,又或是一张交互性动画图,Plotly都能在最短的时间内满足要求。

Plotly还提供一个表格工作室,使用者可以将自己的可视化上传到一个在线存储库中以便未来进行编辑。

更多Python知识,请关注Python视频教程!

F. 如何让python可视化

简介

在 Python 中,将数据可视化有多种选择,正是因为这种多样性,何时选用何种方案才变得极具挑战性。本文包含了一些较为流行的工具以及如何使用它们来创建简单的条形图,我将使用下面几种工具来完成绘图示例:

  • Pandas

  • Seaborn

  • ggplot

  • Bokeh

  • pygal

  • Plotly

  • 在示例中,我将使用 pandas 处理数据并将数据可视化。大多数案例中,使用上述工具时无需结合 pandas,但我认为 pandas 与可视化工具结合是非常普遍的现象,所以以这种方式开启本文是很棒的。

    什么是 Matplotlib?

    Matplotlib是众多 Python 可视化包的鼻祖。其功能非常强大,同时也非常复杂。你可以使用 Matplotlib 去做任何你想做的事情,但是想要搞明白却并非易事。我不打算展示原生的 Matplotlib 例子,因为很多工具(特别是 Pandas 和 Seaborn)是基于 Matplotlib 的轻量级封装,如果你想了解更多关于 Matplotlib 的东西,在我的这篇文章—《simple graphing》中有几个例子可供参考。

    Matplotlib 令我最不满的地方是它花费太多工作来获得目视合理的图表,但是在本文的某些示例中,我发现无需太多代码就可以轻松获得漂亮的可视化图表。关于 Matplotlib 冗长特点的示例,可以参考这篇文章《ggplot》中的平面图示例。

    方法论

    简要说一下本文的方法论。我坚信只要读者开始阅读本文,他们将会指出使用这些工具的更好方法。我的目标并非在每个例子中创造出完全相同的图表,而是花费大致相同的时间探索方法,从而在每个例子中以大体相同的方法将数据可视化。

    在这个过程中,我所面临的最大挑战是格式化 x 轴和 y 轴以及基于某些大的标签让数据看起来合理,弄明白每种工具是如何格式化数据的也花费了我不少精力,我搞懂这些之后,剩余的部分就相对简单了。

    另外还需要注意的一点是,条形图可能是制作起来相对更简单的图表,使用这些工具可以制作出多种类型的图表,但是我的示例更加侧重的是简易的格式化,而不是创新式的可视化。另外,由于标签众多,导致一些图表占据了很多空间,所以我就擅自移除了它们,以保证文章长度可控。最后,我又调整了图片尺寸,所以图片的任何模糊现象都是缩放导致的问题,并不代表真实图像的质量。

    最后一点,我以一种尝试使用 Excel 另外一款替代品的心态来实现示例。我认为我的示例在报告、展示、邮件或者静态网页中都更具说服力。如果你正在评估用于实时可视化数据的工具,亦或是通过其他途径去分享,那么其中的部分工具会提供很多我还未涉猎到的功能。

    数据集

    之前的文章描述了我们要处理的数据,我从每一类中抽取了更深一层的样例,并选用了更详细的元素。这份数据集包含了125行,但是为了保持简洁,我只选用了前10行,完整的数据集可以在这里找到。

热点内容
nas网络服务器为什么贵 发布:2025-01-23 08:00:00 浏览:940
语音服务器未连接如何连接视频 发布:2025-01-23 07:59:11 浏览:882
日流量10万需要什么类型服务器 发布:2025-01-23 07:58:27 浏览:500
服务器获取地址失败 发布:2025-01-23 07:55:18 浏览:849
java修饰 发布:2025-01-23 07:45:03 浏览:183
oppor9s照片加密 发布:2025-01-23 07:37:57 浏览:712
javahtml乱码 发布:2025-01-23 07:37:56 浏览:539
sqlserverc 发布:2025-01-23 07:34:15 浏览:699
mysql怎么用数据库 发布:2025-01-23 07:21:02 浏览:998
怎么访问暗网 发布:2025-01-23 07:02:04 浏览:666