pythonnumpypdf
A. 如何使用python做统计分析
Shape Parameters
形态参数
While a general continuous random variable can be shifted and scaled
with the loc and scale parameters, some distributions require additional
shape parameters. For instance, the gamma distribution, with density
γ(x,a)=λ(λx)a−1Γ(a)e−λx,
requires the shape parameter a. Observe that setting λ can be obtained by setting the scale keyword to 1/λ.
虽然一个一般的连续随机变量可以被位移和伸缩通过loc和scale参数,但一些分布还需要额外的形态参数。作为例子,看到这个伽马分布,这是它的密度函数
γ(x,a)=λ(λx)a−1Γ(a)e−λx,
要求一个形态参数a。注意到λ的设置可以通过设置scale关键字为1/λ进行。
Let’s check the number and name of the shape parameters of the gamma
distribution. (We know from the above that this should be 1.)
让我们检查伽马分布的形态参数的名字的数量。(我们知道从上面知道其应该为1)
>>>
>>> from scipy.stats import gamma
>>> gamma.numargs
1
>>> gamma.shapes
'a'
Now we set the value of the shape variable to 1 to obtain the
exponential distribution, so that we compare easily whether we get the
results we expect.
现在我们设置形态变量的值为1以变成指数分布。所以我们可以容易的比较是否得到了我们所期望的结果。
>>>
>>> gamma(1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Notice that we can also specify shape parameters as keywords:
注意我们也可以以关键字的方式指定形态参数:
>>>
>>> gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Freezing a Distribution
冻结分布
Passing the loc and scale keywords time and again can become quite
bothersome. The concept of freezing a RV is used to solve such problems.
不断地传递loc与scale关键字最终会让人厌烦。而冻结RV的概念被用来解决这个问题。
>>>
>>> rv = gamma(1, scale=2.)
By using rv we no longer have to include the scale or the shape
parameters anymore. Thus, distributions can be used in one of two ways,
either by passing all distribution parameters to each method call (such
as we did earlier) or by freezing the parameters for the instance of the
distribution. Let us check this:
通过使用rv我们不用再更多的包含scale与形态参数在任何情况下。显然,分布可以被多种方式使用,我们可以通过传递所有分布参数给对方法的每次调用(像我们之前做的那样)或者可以对一个分布对象冻结参数。让我们看看是怎么回事:
>>>
>>> rv.mean(), rv.std()
(2.0, 2.0)
This is indeed what we should get.
这正是我们应该得到的。
Broadcasting
广播
The basic methods pdf and so on satisfy the usual numpy broadcasting
rules. For example, we can calculate the critical values for the upper
tail of the t distribution for different probabilites and degrees of
freedom.
像pdf这样的简单方法满足numpy的广播规则。作为例子,我们可以计算t分布的右尾分布的临界值对于不同的概率值以及自由度。
>>>
>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[ 1.37218364, 1.81246112, 2.76376946],
[ 1.36343032, 1.79588482, 2.71807918]])
Here, the first row are the critical values for 10 degrees of freedom
and the second row for 11 degrees of freedom (d.o.f.). Thus, the
broadcasting rules give the same result of calling isf twice:
这里,第一行是以10自由度的临界值,而第二行是以11为自由度的临界值。所以,广播规则与下面调用了两次isf产生的结果相同。
>>>
>>> stats.t.isf([0.1, 0.05, 0.01], 10)
array([ 1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array([ 1.36343032, 1.79588482, 2.71807918])
If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of
degrees of freedom i.e., [10, 11, 12], have the same array shape, then
element wise matching is used. As an example, we can obtain the 10% tail
for 10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f.
by calling
但是如果概率数组,如[0.1,0.05,0.01]与自由度数组,如[10,11,12]具有相同的数组形态,则元素对应捕捉被作用,我们可以分别得到10%,5%,1%尾的临界值对于10,11,12的自由度。
>>>
>>> stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([ 1.37218364, 1.79588482, 2.68099799])
Specific Points for Discrete Distributions
离散分布的特殊之处
Discrete distribution have mostly the same basic methods as the
continuous distributions. However pdf is replaced the probability mass
function pmf, no estimation methods, such as fit, are available, and
scale is not a valid keyword parameter. The location parameter, keyword
loc can still be used to shift the distribution.
离散分布的简单方法大多数与连续分布很类似。当然像pdf被更换为密度函数pmf,没有估计方法,像fit是可用的。而scale不是一个合法的关键字参数。Location参数,关键字loc则仍然可以使用用于位移。
The computation of the cdf requires some extra attention. In the case of
continuous distribution the cumulative distribution function is in most
standard cases strictly monotonic increasing in the bounds (a,b) and
has therefore a unique inverse. The cdf of a discrete distribution,
however, is a step function, hence the inverse cdf, i.e., the percent
point function, requires a different definition:
ppf(q) = min{x : cdf(x) >= q, x integer}
Cdf的计算要求一些额外的关注。在连续分布的情况下,累积分布函数在大多数标准情况下是严格递增的,所以有唯一的逆。而cdf在离散分布,无论如何,是阶跃函数,所以cdf的逆,分位点函数,要求一个不同的定义:
ppf(q) = min{x : cdf(x) >= q, x integer}
For further info, see the docs here.
为了更多信息可以看这里。
We can look at the hypergeometric distribution as an example
>>>
>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]
我们可以看这个超几何分布的例子
>>>
>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]
If we use the cdf at some integer points and then evaluate the ppf at
those cdf values, we get the initial integers back, for example
如果我们使用在一些整数点使用cdf,它们的cdf值再作用ppf会回到开始的值。
>>>
>>> x = np.arange(4)*2
>>> x
array([0, 2, 4, 6])
>>> prb = hypergeom.cdf(x, M, n, N)
>>> prb
array([ 0.0001031991744066, 0.0521155830753351, 0.6083591331269301,
0.9897832817337386])
>>> hypergeom.ppf(prb, M, n, N)
array([ 0., 2., 4., 6.])
If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:
如果我们使用的值不是cdf的函数值,则我们得到一个更高的值。
>>>
>>> hypergeom.ppf(prb + 1e-8, M, n, N)
array([ 1., 3., 5., 7.])
>>> hypergeom.ppf(prb - 1e-8, M, n, N)
array([ 0., 2., 4., 6.])
B. 怎么用python进行数据
pandas是本书后续内容的首选库。pandas可以满足以下需求:
具备按轴自动或显式数据对齐功能的数据结构。这可以防止许多由于数据未对齐以及来自不同数据源(索引方式不同)的数据而导致的常见错误。.
集成时间序列功能
既能处理时间序列数据也能处理非时间序列数据的数据结构
数学运算和简约(比如对某个轴求和)可以根据不同的元数据(轴编号)执行
灵活处理缺失数据
合并及其他出现在常见数据库(例如基于SQL的)中的关系型运算
- #-*- encoding:utf-8 -*-import numpy as npimport osimport pandas as pdfrom pandas import Series,DataFrameimport matplotlib.pyplot as pltimport time#下面看一下cummin函数#注意:这里的cummin函数是截止到目前为止的最小值,而不是加和以后的最小值frame = DataFrame([[1,2,3,4],[5,6,7,8],[-10,11,12,-13]],index = list('abc'),columns = ['one','two','three','four'])print frame.cummin()print frame
- >>>
- one two three four
- a 1 2 3 4
- b 1 2 3 4
- c -10 2 3 -13
- one two three four
- a 1 2 3 4
- b 5 6 7 8
- c -10 11 12 -13
1、pandas数据结构介绍
两个数据结构:Series和DataFrame。Series是一种类似于以为NumPy数组的对象,它由一组数据(各种NumPy数据类型)和与之相关的一组数据标签(即索引)组成的。可以用index和values分别规定索引和值。如果不规定索引,会自动创建 0 到 N-1 索引。
相关系数与协方差
有些汇总
C. Python零基础入门用什么书谁有pdf的分享一下
入门的话,建议先看网上的教程自学,比如“python菜鸟教程”(简单),“python廖雪峰教程”(相对难一点)。这两个教程不错,突出重点,也容易学习节约时间。
看完网上上述的其中一个教程之后,可以看pdf版的《python基础教程(第二版)》,这本书很好,知识比较详细,条理也清晰。
建议《python基础教程》学到一定程度的时候,可以选择自己要深入学习的方向(比如算法与数据结构、数据分析等),再选择学习其他的书。(一般学习得比较多的是关于numpy、matplotlib、pandas、scipy的书)
【这也是我自己的学习路线。个人觉得,先学习突出重点的网上教程要好,因为书本往往介绍知识太详细,一下子给零基础的学习者灌输太多知识是很难消化的,也容易失去兴趣。当学习了重点知识后,然后再去学习细节,一点点提升难度,效果可能更好。】
D. 《python科学计算第二版张若愚》pdf下载在线阅读全文,求百度网盘云资源
《python科学计算第二版张若愚》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1PTV2fC43VVO9_CIcUL10Cw
简介:《Python 科学计算(第2版)》详细介绍Python科学计算中常用的扩展库NumPy、SciPy、matplotlib、Pandas、SymPy、TTK、Mayavi、OpenCV、Cython,涉及数值计算、界面制作、三维可视化、图像处理、提高运算效率等多方面的内容。
E. python数据分析需要哪些库
1.Numpy库
是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中Z出色的绘图库。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的Z佳工具,以及用自然语言进行游戏的神奇图书馆。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区。
F. Python怎么检验数据分布
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy as np
import pydotplus
import csv
import scipy.stats as ss
game =[ ]#game是一个列表 ,你自己弄一个自己的数据列表即可
x = np.array(game)#x要处理成这个样子:
N=30
counts, bins = np.histogram(x, bins=N)
bin_width = bins[1]-bins[0]
total_count = float(sum(counts))
f, ax = plt.subplots(1, 1)
f.suptitle('query_uri')
ax.bar(bins[:-1]+bin_width/2., counts, align='center', width=.85*bin_width)
ax.grid('on')
def fit_pdf(x, name='lognorm', color='r'):
dist = getattr(ss, name) # params = shape, loc, scale
# dist = ss.gamma # 3 params
params = dist.fit(x, loc=0) # 1-day lag minimum for shipping
y = dist.pdf(bins, *params)*total_count*bin_width
sqerror_sum = np.log(sum(ci*(yi - ci)**2. for (ci, yi) in zip(counts, y)))
ax.plot(bins, y, color, lw=3, alpha=0.6, label='%s err=%3.2f' % (name, sqerror_sum))
return y
colors = ['r-', 'g-', 'r:', 'g:']
for name, color in zip(['exponweib', 't', 'gamma'], colors): # 'lognorm', 'erlang', 'chi2', 'weibull_min',
#分号后面的分布也可以打进去 线条颜色自己加
y = fit_pdf(x, name=name, color=color)
ax.legend(loc='best', frameon=False)
plt.savefig('G:\weibull216.png')
plt.show()
我之前也是考虑这个问题,这些代码能实现'exponweib', 't', 'gamma', 'lognorm', 'erlang', 'chi2', 'weibull_min',的拟合。只要自己输入game,game为一组数据即可。
G. python能干什么
学完Python之后,可以从事以下工作岗位:
1、web开发:Python拥有非常完善的与web服务器进行交互的库,以及大量免费前端网页模板,有非常优秀而且成熟的diangoWEB框架,功能齐全。
2、Linux运维:通过shell脚本去实现自动化运维,但是编程能力较弱,可以使用功能的库很少,而Python作为胶水语言,可以很方便的与其他想结合,对各类工具进行二次开发,形成一套自己的运维管理系统。
3、游戏开发:在游戏开发方面可能Python无法匹敌C++,但是由于Python脚本化的优点,类似于游戏剧本、游戏玩法逻辑等这种非常灵活的设计上,修改起来非常方便。如果用于开发一款游戏程序,Python是非常具有优势的。
4、网络爬虫:在爬虫方面,Python可以说是独领风骚了,Python具有非常丰富的库去网页文档的接口api以及后期网页文档的快速处理。
5、桌面软件:在Windows系统桌面开发领域,C++等语言应用十分广泛,而Python可以实现与C++无缝对接,并且同时支持QT以及GTK。
6、数据分析:python作为一门工程性语言,对于数据处理的类库是相当丰富的,比如有高性能的科学计算类库NumPy和SciPy。
7、人工智能:其实可以写人工智能语言有很多,为何Python是首先呢?因为Python是胶水语言,具有独特优势才具有如此好的效果,主要使用python是因为CPython和底层原因的融合使得开发起来更加方便。
更多技术干货,可关注:
H. python pdf二进制读取问题
可以使用numpy.fromfile(),也可以使用open(filename, 'rb'),其中的'b'就是二进制的意思,然后使用文件类型的read方法,读取一些字节,再用struct.unpack()方法来解析二进制。
第一种方法是一次性读入文件(或文件的前多少个连续字节)到一个数组中,因此,灵活性差。
第二种方法灵活性很高,可以读取任意位置(使用文件的seek()方法跳跃位置)的二进制数据,再使用struct.unpack()方法来进行各种二进制解析。
提示:二进制文件是不保留存储方式的数据格式,因此,读二进制文件时应该知道二进制文件的存储格式。