当前位置:首页 » 编程语言 » ldapython

ldapython

发布时间: 2022-01-13 13:10:51

❶ LDA主题模型,有人用过JGibbLDA这个lda实现么

有很多啊,python里面都有标准的库了,其实有了JGibbsLDA也就够了,想要其他语言的版本,自己改写一个吧

❷ python lda 主题模型 需要使用什么包

python lda 主题模型 需要使用什么包
数据结构是程序构成的重要部分,链表、树、图这些在用C 编程时需要仔细表达的问题在Python 中简单了很多。在Python 中,最基本的数据结构就是数组、序列和哈希表,用它们想要表达各种常见的数据结构是非常容易的。没了定义指针、分配内存的任务,编程变得有趣了。CORBA 是一种高级的软件体系结构,它是语言无关平台无关的。C++、Java 等语言都有CORBA 绑定,但与它们相比,Python 的 CORBA 绑定却容易很多,因为在程序员看来,一个 CORBA 的类和 Python 的类用起来以及实现起来并没有什么差别。

❸ python lda 粘贴代码后出现这样的问题,求救

好好看代码,不要沾别人的,一般网上的代码只是重点代码,不是完整代码

❹ python数据挖掘常用工具有哪几种

python有强大的第三方库,广泛用于数据分析,数据挖掘、机器学习等领域,下面小编整理了python数据挖掘的一些常用库,希望对各位小伙伴学习python数据挖掘有所帮助。

1. Numpy
能够提供数组支持,进行矢量运算,并且高效地处理函数,线性代数处理等。提供真正的数组,比起python内置列表来说, Numpy速度更快。同时,Scipy、Matplotlib、Pandas等库都是源于 Numpy。因为 Numpy内置函数处理数据速度与C语言同一级别,建议使用时尽量用内置函数。
2.Scipy
基于Numpy,能够提供了真正的矩阵支持,以及大量基于矩阵的数值计算模块,包括:插值运算,线性代数、图像信号,快速傅里叶变换、优化处理、常微分方程求解等。
3. Pandas
源于NumPy,提供强大的数据读写功能,支持类似SQL的增删改查,数据处理函数非常丰富,并且支持时间序列分析功能,灵活地对数据进行分析与探索,是python数据挖掘,必不可少的工具。
Pandas基本数据结构是Series和DataFrame。Series是序列,类似一维数组,DataFrame相当于一张二维表格,类似二维数组,DataFrame的每一列都是一个Series。
4.Matplotlib
数据可视化最常用,也是醉好用的工具之一,python中着名的绘图库,主要用于2维作图,只需简单几行代码可以生成各式的图表,例如直方图,条形图,散点图等,也可以进行简单的3维绘图。
4.Scikit-Learn
Scikit-Learn源于NumPy、Scipy和Matplotlib,是一 款功能强大的机器学习python库,能够提供完整的学习工具箱(数据处理,回归,分类,聚类,预测,模型分析等),使用起来简单。不足是没有提供神经网络,以及深度学习等模型。
5.Keras
基于Theano的一款深度学习python库,不仅能够用来搭建普通神经网络,还能建各种深度学习模型,例如:自编码器、循环神经网络、递归神经网络、卷积神经网络等,重要的是,运行速度几块,对搭建各种神经网络模型的步骤进行简化,能够允许普通用户,轻松地搭建几百个输入节点的深层神经网络,定制程度也非常高。
6.Genism
Genism主要用来处理语言方面的任务,如文本相似度计算、LDA、Word2Vec等。
7.TensorFlow
google开源的数值计算框架,采用数据流图的方式,可灵活搭建深度学习模型。

❺ Python中用LDA计算困惑度时出现代码错误,这行代码表示模型文件名的迭代公式

LDA主题模型的评价指标是困惑度,困惑度越小,模型越好。
所以,可以跑一组实验,看不同迭代次数对应的困惑度是多少,画一条曲线,最小困惑度对应的迭代次数即为最佳次数。
迭代次数太少,会导致模型尚未收敛,迭代次数太多,又会浪费计算资源。

❻ 有没有老师了解Python用于Meta分析的工具包

Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括:

  • 一个强大的N维数组对象Array;

  • 比较成熟的(广播)函数库;

  • 用于整合C/C++和Fortran代码的工具包;

  • 实用的线性代数、傅里叶变换和随机数生成函数。

  • SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。其功能与软件MATLAB、Scilab和GNU Octave类似。

    Numpy和Scipy常常结合着使用,Python大多数机器学习库都依赖于这两个模块,绘图和可视化依赖于matplotlib模块,matplotlib的风格与matlab类似。Python机器学习库非常多,而且大多数开源,主要有:

    1.scikit-learn

    scikit-learn是一个基于SciPy和Numpy的开源机器学习模块,包括分类、回归、聚类系列算法,主要算法有SVM、逻辑回归、朴素贝叶斯、Kmeans、DBSCAN等,目前由INRI资助,偶尔Google也资助一点。

    项目主页:

    https://pypi.python.org/pypi/scikit-learn/

    http://scikit-learn.org/

    https://github.com/scikit-learn/scikit-learn

    2.NLTK

    NLTK(Natural Language Toolkit)是Python的自然语言处理模块,包括一系列的字符处理和语言统计模型。NLTK常用于学术研究和教学,应用的领域有语言学、认知科学、人工智能、信息检索、机器学习等。NLTK提供超过50个语料库和词典资源,文本处理库包括分类、分词、词干提取、解析、语义推理。可稳定运行在Windows, Mac OS X和linux平台上.

    项目主页:

    http://sourceforge.net/projects/nltk/

    https://pypi.python.org/pypi/nltk/

    http://nltk.org/

    3.Mlpy

    Mlpy是基于NumPy/SciPy的Python机器学习模块,它是Cython的扩展应用。包含的机器学习算法有:

    l回归

    least squares,ridge regression, least angle regression,elastic net, kernel ridge regression,support vector machines(SVM),partial least squares(PLS)

    l分类

    linear discriminant analysis(LDA), Basicperceptron, Elastic Net,logistic regression, (Kernel) Support Vector Machines (SVM), Diagonal Linear Discriminant Analysis (DLDA), Golub Classifier, Parzen-based, (kernel) Fisher Discriminant Classifier, k-nearest neighbor, Iterative RELIEF, Classification Tree, Maximum Likelihood Classifier

    l聚类

    hierarchical clustering, Memory-saving Hierarchical Clustering,k-means

    l维度约减

    (Kernel)Fisher discriminant analysis(FDA), Spectral Regression Discriminant Analysis (SRDA), (kernel)Principal component analysis(PCA)

    项目主页:

    http://sourceforge.net/projects/mlpy

    https://mlpy.fbk.eu/

    4.Shogun

    Shogun是一个开源的大规模机器学习工具箱。目前Shogun的机器学习功能分为几个部分:feature表示,feature预处理,核函数表示,核函数标准化,距离表示,分类器表示,聚类方法,分布,性能评价方法,回归方法,结构化输出学习器。

    SHOGUN的核心由C++实现,提供Matlab、R、Octave、Python接口。主要应用在linux平台上。

    项目主页:

    http://www.shogun-toolbox.org/

    5.MDP

    The Molar toolkit for Data Processing (MDP),用于数据处理的模块化工具包,一个Python数据处理框架。

    从用户的观点,MDP是能够被整合到数据处理序列和更复杂的前馈网络结构的一批监督学习和非监督学习算法和其他数据处理单元。计算依照速度和内存需求而高效的执行。从科学开发者的观点,MDP是一个模块框架,它能够被容易地扩展。新算法的实现是容易且直观的。新实现的单元然后被自动地与程序库的其余部件进行整合。MDP在神经科学的理论研究背景下被编写,但是它已经被设计为在使用可训练数据处理算法的任何情况中都是有用的。其站在用户一边的简单性,各种不同的随时可用的算法,及应用单元的可重用性,使得它也是一个有用的教学工具。

    项目主页:

    http://mdp-toolkit.sourceforge.net/

    https://pypi.python.org/pypi/MDP/

❼ 怎样实现对短文本的主题分析python3实现

看这个题目很有兴趣,说两句mark一下学习。

人在阅读时,不一定预设一个或者几个主题,而是根据词语涉及的场景或者类别逐步进入作者的思路,可能最后一句才发现那只是一段笑话。
LDA的不足我觉得主要有两个,一个是主题桶的数量,一个是词语无序的统计。

改进的思路,一个是把主题桶换成词典,就是把每个词可能的场景或者类别抽取出来分析,发散思维而不是在主题桶里选择。比如:苹果、价格、乔布斯。苹果可能的类别有水果、农业、经济、手机等,与后面的词语类别的重叠和统计,形成主题的神经网络,以后通过AI完善词典不断提高分析效果。
一个是增加对文本顺序的考虑,对剧情内容进行捕捉,通过对前后主题和场景的变化,达到分析剧情的目的。
只是一个思路,仅供参考。

❽ Python LDA降维中不能输出指定维度(n_components)的新数据集

LDA降维后的维度区间在[1,C-1],C为特征空间的维度,与原始特征数n无关,对于二值分类,最多投影到1维,所以我估计你是因为这是个二分类问题,所以只能降到一维。

❾ python中的lda包怎么用

安装
$ pip install lda --user

示例
from __future__ import division, print_function

import numpy as np
import lda
import lda.datasets

# document-term matrix
X = lda.datasets.load_reuters()
print("type(X): {}".format(type(X)))
print("shape: {}\n".format(X.shape))
print(X[:5, :5])

'''输出:

type(X): <type 'numpy.ndarray'>
shape: (395L, 4258L)

[[ 1 0 1 0 0]
[ 7 0 2 0 0]
[ 0 0 0 1 10]
[ 6 0 1 0 0]
[ 0 0 0 2 14]]
'''

热点内容
循迹小车算法 发布:2024-12-22 22:28:41 浏览:80
scss一次编译一直生成随机数 发布:2024-12-22 22:04:24 浏览:954
嫁接睫毛加密 发布:2024-12-22 21:50:12 浏览:974
linuxbin文件的安装 发布:2024-12-22 21:46:07 浏览:798
vlcforandroid下载 发布:2024-12-22 21:45:26 浏览:664
电脑做网关把数据发送至服务器 发布:2024-12-22 21:44:50 浏览:431
新华三代理什么牌子的服务器 发布:2024-12-22 21:33:21 浏览:342
欢太会员密码是什么 发布:2024-12-22 20:57:28 浏览:74
sqllocaldb 发布:2024-12-22 20:07:08 浏览:126
如何找到我的服务器 发布:2024-12-22 19:52:14 浏览:301