当前位置:首页 » 编程语言 » python雷达图

python雷达图

发布时间: 2022-07-23 05:43:18

‘壹’ python pyecharts怎么显示

echarts是什么?下面是来自官方的介绍:
ECharts,缩写来自Enterprise Charts,商业级数据图表,一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE6/7/8/9/10/11,chrome,firefox,Safari等),底层依赖轻量级的Canvas类库ZRender,提供直观,生动,可交互,可高度个性化定制的数据可视化图表。创新的拖拽重计算、数据视图、值域漫游等特性大大增强了用户体验,赋予了用户对数据进行挖掘、整合的能力。
支持折线图(区域图)、柱状图(条状图)、散点图(气泡图)、K线图、饼图(环形图)、雷达图(填充雷达图)、和弦图、力导向布局图、地图、仪表盘、漏斗图、事件河流图等12类图表,同时提供标题,详情气泡、图例、值域、数据区域、时间轴、工具箱等7个可交互组件,支持多图表、组件的联动和混搭展现。
作为网络开源的工具,个人觉得这个是难得的良心之作,哈哈哈。
用法
使用echarts还是需要一定的前端知识,这里介绍一个python包–pyecharts,利用几行代码轻松生成echarts风格的图表。
安装
pip install pyecharts12

实例
from pyecharts import Bar

attr = ["{}month".format(i) for i in range(1, 13)]
attr = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
bar = Bar("Bar chart", "precipitation and evaporation one year")
bar.add("precipitation", attr, v1, mark_line=["average"], mark_point=["max", "min"])
bar.add("evaporation", attr, v2, mark_line=["average"], mark_point=["max", "min"])
bar.render()

‘贰’ python数据分析师需要掌握什么技能

首先是基础篇
1、首先是Excel,貌似这个很简单,其实未必。Excel不仅能够做简单二维表、复杂嵌套表,能画折线图/Column chart/Bar chart/Area chart/饼图/雷达图/Combo char/散点图/Win Loss图等,而且能实现更高级的功能,包括透视表(类似于BI的多维分析模型Cube),以及Vlookup等复杂函数,处理100万条以内的数据没有大问题。最后,很多更高级的工具都有Excel插件,例如一些AI Machine Learning的开发工具。
2. SQL(数据库

我们都知道数据分析师每天都会处理海量的数据,这些数据来源于数据库,那么怎么从数据库取数据?如何建立两表、三表之间的关系?怎么取到自己想要的特定的数据?等等这些数据选择问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能。
3. 统计学基础
数据分析的前提要对数据有感知,数据如何收集?数据整体分布是怎样的?如果有时间维度的话随着时间的变化是怎样的?数据的平均值是什么?数据的最大值最小值指什么?数据相关与回归、时间序列分析和预测等等。
4、掌握可视化工具,比如BI,如Cognos/Tableau/FineBI等,具体看企业用什么工具,像我之前用的是FineBI。这些工具做可视化非常方便,特别是分析报告能含这些图,一定会吸引高层领导的眼球,一目了然了解,洞察业务的本质。另外,作为专业的分析师,用多维分析模型Cube能够方便地自定义报表,效率大大提升。
进阶阶段需要掌握的:

1、系统的学好统计学
纯粹的机器学习讲究算法预测能力和实现,但是统计一直就强调“可解释性”。比如说,针对今天微博股票发行就上升20%,你把你的两个预测股票上涨还是下跌的model套在新浪的例子上,然后给你的上司看。统计学就是这样的作用。
数据挖掘相关的统计方法(多元Logistic回归分析、非线性回归分析、判别分析等)
定量方法(时间轴分析、概率模型、优化)
决策分析(多目的决策分析、决策树、影响图、敏感性分析)
树立竞争优势的分析(通过项目和成功案例学习基本的分析理念)
数据库入门(数据模型、数据库设计)
预测分析(时间轴分析、主成分分析、非参数回归、统计流程控制)
数据管理(ETL(Extract、Transform、Load)、数据治理、管理责任、元数据)
优化与启发(整数计划法、非线性计划法、局部探索法、超启发(模拟退火、遗传算法))
大数据分析(非结构化数据概念的学习、MapRece技术、大数据分析方法)
数据挖掘(聚类(k-means法、分割法)、关联性规则、因子分析、存活时间分析)
其他,以下任选两门(社交网络、文本分析、Web分析、财务分析、服务业中的分析、能源、健康医疗、供应链管理、综合营销沟通中的概率模型)
风险分析与运营分析的计算机模拟
软件层面的分析学(组织层面的分析课题、IT与业务用户、变革管理、数据课题、结果的展现与传达方法)
2、掌握AI Machine Learning算法,会用工具(比如Python/R)进行建模。
传统的BI分析能回答过去发生了什么?现在正在发生什么?但对于未来会发生什么?必须靠算法。虽然像Tableau、FineBI等自助式BI已经内置了一部分分析模型,但是分析师想要更全面更深度的探索,需要像Python/R的数据挖掘工具。另外大数据之间隐藏的关系,靠传统工具人工分析是不可能做到的,这时候交由算法去实现,无疑会有更多的惊喜。
其中,面向统计分析的开源编程语言及其运行环境“R”备受瞩目。R的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。此外,它还具备称为CRAN(The Comprehensive R Archive Network)的包扩展机制,通过导入扩展包就可以使用标准状态下所不支持的函数和数据集。R语言虽然功能强大,但是学习曲线较为陡峭,个人建议从python入手,拥有丰富的statistical libraries,NumPy ,SciPy.org ,Python Data Analysis Library,matplotlib: python plotting。
以上我的回答希望对你有所帮助

‘叁’ 国内有哪些好的数据可视化工具,推荐一下

诚然,数据可视化可谓是数据分析工作的最后一道工序,前面的作业做得再好,如果不能很好地展现出来,那就算是临门一脚、功亏一篑了……下面给大家列出好用的数据可视化工具清单,希望可以为你的学习或工作带来一些帮助。

1、强大的R可视化包-ggplot2

R是一款偏向于统计分析的脚本语言软件,基于S语言开发,如果你是R语言忠实fans,我相信你一定不会不知道R里单独的一个绘图包—ggplot2,之所以给ggplot2“强大”的头衔,一方面确实能够轻松应付各个领域的图像绘制,静态的,动态的,说的出名字的,个性化特制的;另一方面小编就是学统计学的,自然相对熟悉这个包。

ggplot2由Hadley Wickham在2005年创造。受欢迎的原因是将图形分解为语素(如尺度、图层)的思想。ggplot2可以作为R语言基础绘图包的替代,同时ggplot2预设有多种印刷及网页尺寸。

当然有些数据分析软件也带透视表、绘图功能,如MySQL、SPSS,但数据可视化不作为主要功能,这里就不如上面较详细说了。

‘肆’ 雷达图报错

labels下面加一行:
labels=np.concatenate((labels,[labels[0]]))

‘伍’ 雷达图绘制比较复杂,不属于简易图表对吗

是的,不属于。
雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法。轴的相对位置和角度通常是无信息的。雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图。它相当于平行坐标图,轴径向排列。
有三种方法来绘制雷达图分别是Excel、PowerBI和Python,其中比较有意思的是在PowerBI里运行Python代码,绘制雷达图。

‘陆’ 用python将数据(实时变化)显示到雷达图上。

1、以固定点画多个圆
2、每个点的坐标必须预先知道(当然坐标一直在边,那么在每次坐标变化后,都要获取到最新的坐标值)
3、依据坐标值在图上画出圆点。
这只是思路,没有源代码,只能帮到此步

‘柒’ python绘制雷达图代码能填充吗

能。
在Python中得turtle库,就可以使用以下命令进行填充turtle.fillcolor(颜色)。

‘捌’ 哪位大哥帮我用Python把它变成极坐标显示的那种(就是在圆上面展示出来各个角度出现的频率),我没有写出

楼主是否说的是雷达图呢?

剩下的坐标我就懒得打啦,楼主不介意的吧~

热点内容
win7用户名密码是什么 发布:2025-01-31 10:57:38 浏览:394
网址端口访问 发布:2025-01-31 10:49:30 浏览:512
javaweb代码 发布:2025-01-31 10:37:54 浏览:259
sqlserver合并 发布:2025-01-31 10:22:27 浏览:712
大理服务器地址 发布:2025-01-31 10:10:52 浏览:972
流上传文件 发布:2025-01-31 10:09:27 浏览:40
满赠算法 发布:2025-01-31 09:54:27 浏览:709
滨州视频拍摄脚本 发布:2025-01-31 09:48:25 浏览:418
光遇出现服务器已满是什么回事 发布:2025-01-31 09:35:29 浏览:356
AndroidWindows7 发布:2025-01-31 09:32:17 浏览:260