线程池java
‘壹’ 什么是java线程池
多线程是为了能够让计算机资源合理的分配,对于处理不同的任务创建不同的线程进行处理,但是计算机创建一个线程或者销毁一个线程所花费的也是比较昂贵的,有时候需要同时处理的事情比较多,就需要我们频繁的进行线程的创建和销毁,这样花费的时间也是比较多的。为了解决这一问题,我们就可以引用线程池的概念。
所谓线程池就是将线程集中管理起来,当需要线程的时候,可以从线程池中获取空闲的线程,这样可以减少线程的频繁创建与销毁,节省很大的时间和减少很多不必要的操作。
在java中提供了ThreadPoolExecutor类来进行线程的管理,这个类继承于AbstractExecutorService,而AbstractExecutorService实现了ExecutorService接口,我们可以使用ThreadPoolExecutor来进行线程池的创建。
在ThreadPoolExecutor的构造方法中,有多个参数,可以配置不同的参数来进行优化。这个类的源码构造方法为:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)其中每个参数代表的意义分别为
corePoolSize : 线程池中的核心线程数量,当线程池中当前的线程数小于这个配置的时候,如果有一个新的任务到来,即使线程池中还存在空闲状态的线程,程序也会继续创建一个新的线程放进线程池当中
maximumPoolSize: 线程池中的线程最大数量
keepAliveTime:当线程池中的线程数量大于配置的核心线程数量(corePoolSize)的时候,如果当前有空闲的线程,则当这个空闲线程可以存在的时间,如果在keepAliveTime这个时间点内没有新的任务使用这个线程,那么这个线程将会结束,核心线程不会结束,但是如果配置了allowCoreThreadTimeOut = true,则当空闲时间超过keepAliveTime之后,线程也会被结束调,默认allowCoreThreadTimeOut = false,即表示默认情况下,核心线程会一直存在于线程池当中。
unit : 空闲线程保持连接时间(keepAliveTime)的时间单位
workQueue:阻塞的任务队列,用来保存等待需要执行的任务。
threadFactory :线程工厂,可以根据自己的需求去创建线程的对象,设置线程的名称,优先级等属性信息。
handler:当线程池中存在的线程数超过设置的最大值之后,新的任务就会被拒绝,可以自己定义一个拒绝的策略,当新任务被拒绝之后,就会使用hander方法进行处理。
在java中也提供了Executors工具类,在这个工具类中提供了多个创建线程池的静态方法,其中包含newCachedThreadPool、newFixedThreadPool、newScheledThreadPool、newSingleThreadExecutor等。但是他们每个方法都是创建了ThreadPoolExecutor对象,不同的是,每个对象的初始 参数值不一样;
‘贰’ java 什么是线程池及为什么要使用线程池
创建线程要花费昂贵的资源和时间,如果任务来了才创建线程那么响应时间会变长,而且一个进程能创建的线程数有限。为了避免这些问题,在程序启动的时候就创建若干线程来响应处理,它们被称为线程池,里面的线程叫工作线程。从JDK1.5开始,Java API提供了Executor框架让你可以创建不同的线程池。比如单线程池,每次处理一个任务;数目固定的线程池或者是缓存线程池(一个适合很多生存期短的任务的程序的可扩展线程池)。
‘叁’ java线程池(一) 简述线程池的几种使用方式
首先说明下java线程是如何实现线程重用的
1. 线程执行完一个Runnable的run()方法后,不会被杀死
2. 当线程被重用时,这个线程会进入新Runnable对象的run()方法12
java线程池由Executors提供的几种静态方法创建线程池。下面通过代码片段简单介绍下线程池的几种实现方式。后续会针对每个实现方式做详细的说明
newFixedThreadPool
创建一个固定大小的线程池
添加的任务达到线程池的容量之后开始加入任务队列开始线程重用总共开启线程个数跟指定容量相同。
@Test
public void newFixedThreadPool() throws Exception {
ExecutorService executorService = Executors.newFixedThreadPool(1);
executorService = Executors.newFixedThreadPool(1, new ThreadFactoryBuilder().build());
RunThread run1 = new RunThread("run 1");
executorService.execute(run1);
executorService.shutdown();
}12345678
newSingleThreadExecutor
仅支持单线程顺序处理任务
@Test
public void newSingleThreadExecutor() throws Exception {
ExecutorService executorService = Executors.newSingleThreadExecutor();
executorService = Executors.newSingleThreadExecutor(new ThreadFactoryBuilder().build());
executorService.execute(new RunThread("run 1"));
executorService.execute(new RunThread("run 2"));
executorService.shutdown();
}123456789
newCachedThreadPool
这种情况跟第一种的方式类似,不同的是这种情况线程池容量上线是Integer.MAX_VALUE 并且线程池开启缓存60s
@Test
public void newCachedThreadPool() throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
executorService = Executors.newCachedThreadPool(new ThreadFactoryBuilder().build());
executorService.execute(new RunThread("run 1"));
executorService.execute(new RunThread("run 2"));
executorService.shutdown();
}123456789
newWorkStealingPool
支持给定的并行级别,并且可以使用多个队列来减少争用。
@Test
public void newWorkStealingPool() throws Exception {
ExecutorService executorService = Executors.newWorkStealingPool();
executorService = Executors.newWorkStealingPool(1);
RunThread run1 = new RunThread("run 1");
executorService.execute(run1);
executorService.shutdown();
}123456789
newScheledThreadPool
看到的现象和第一种相同,也是在线程池满之前是新建线程,然后开始进入任务队列,进行线程重用
支持定时周期执行任务(还没有看完)
@Test
public void newScheledThreadPool() throws Exception {
ExecutorService executorService = Executors.newScheledThreadPool(1);
executorService = Executors.newScheledThreadPool(1, new ThreadFactoryBuilder().build());
executorService.execute(new RunThread("run 1"));
executorService.execute(new RunThread("run 2"));
executorService.shutdown();
}
‘肆’ java线程池中的线程数应该如何设置
java中线程池的监控可以检测到正在执行的线程数。
通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用
taskCount:线程池需要执行的任务数量。
completedTaskCount:线程池在运行过程中已完成的任务数量。小于或等于taskCount。
largestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。
getPoolSize:线程池的线程数量。如果线程池不销毁的话,池里的线程不会自动销毁,所以这个大小只增不+ getActiveCount:获取活动的线程数。
通过扩展线程池进行监控。通过继承线程池并重写线程池的beforeExecute,afterExecute和terminated方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。这几个方法在线程池里是空方法。如:
protected void beforeExecute(Thread t, Runnable r) { }
‘伍’ java几种线程池的应用比较
1newCachedThreadPool
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
这种类型的线程池特点是:
工作线程的创建数量几乎没有限制(其实也有限制的,数目为Interger. MAX_VALUE),这样可灵活的往线程池中添加线程。
如果长时间没有往线程池中提交任务,即如果工作线程空闲了指定的时间(默认为1分钟),则该工作线程将自动终止。终止后,如果你又提交了新的任务,则线程池重新创建一个工作线程。
在使用CachedThreadPool时,一定要注意控制任务的数量,否则,由于大量线程同时运行,很有会造成系统瘫痪。
2newFixedThreadPool
创建一个指定工作线程数量的线程池。每当提交一个任务就创建一个工作线程,如果工作线程数量达到线程池初始的最大数,则将提交的任务存入到池队列中。
FixedThreadPool是一个典型且优秀的线程池,它具有线程池提高程序效率和节省创建线程时所耗的开销的优点。但是,在线程池空闲时,即线程池中没有可运行任务时,它不会释放工作线程,还会占用一定的系统资源。
3newSingleThreadExecutor
创建一个单线程化的Executor,即只创建唯一的工作者线程来执行任务,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO,优先级)执行。如果这个线程异常结束,会有另一个取代它,保证顺序执行。单工作线程最大的特点是可保证顺序地执行各个任务,并且在任意给定的时间不会有多个线程是活动的。
4newScheleThreadPool
创建一个定长的线程池,而且支持定时的以及周期性的任务执行,支持定时及周期性任务执行。
‘陆’ java使用线程池的方式
参考举例:
packagecom.journaldev.threadpool;
{
privateStringcommand;
publicWorkerThread(Strings){
this.command=s;
}
@Override
publicvoidrun(){
System.out.println(Thread.currentThread().getName()+"Start.Command="+command);
processCommand();
System.out.println(Thread.currentThread().getName()+"End.");
}
privatevoidprocessCommand(){
try{
Thread.sleep(5000);
}catch(InterruptedExceptione){
e.printStackTrace();
}
}
@Override
publicStringtoString(){
returnthis.command;
}
}
publicstaticvoidmain(String[]args){
ExecutorServiceexecutor=Executors.newFixedThreadPool(5);for(inti=0;i<10;i++){
Runnableworker=newWorkerThread(""+i);
executor.execute(worker);
}
executor.shutdown();while(!executor.isTerminated()){
}
System.out.println("Finishedallthreads");
}
‘柒’ Java几种线程池类型介绍及使用
线程池作用就是限制系统中执行线程的数量。
根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程 排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程 池中有等待的工作线程,就可以开始运行了;否则进入等待队列。
Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。ThreadPoolExecutor是Executors类的底层实现。
‘捌’ java线程池怎么实现的
线程池简介:
多线程技术主要解决处理器单元内多个线程执行的问题,它可以显着减少处理器单元的闲置时间,增加处理器单元的吞吐能力。
假设一个服务器完成一项任务所需时间为:T1 创建线程时间,T2 在线程中执行任务的时间,T3 销毁线程时间。
如果:T1 + T3 远大于 T2,则可以采用线程池,以提高服务器性能。
一个线程池包括以下四个基本组成部分:
1、线程池管理器(ThreadPool):用于创建并管理线程池,包括 创建线程池,销毁线程池,添加新任务;
2、工作线程(PoolWorker):线程池中线程,在没有任务时处于等待状态,可以循环的执行任务;
3、任务接口(Task):每个任务必须实现的接口,以供工作线程调度任务的执行,它主要规定了任务的入口,任务执行完后的收尾工作,任务的执行状态等;
4、任务队列(taskQueue):用于存放没有处理的任务。提供一种缓冲机制。
线程池技术正是关注如何缩短或调整T1,T3时间的技术,从而提高服务器程序性能的。它把T1,T3分别安排在服务器程序的启动和结束的时间段或者一些空闲的时间段,这样在服务器程序处理客户请求时,不会有T1,T3的开销了。
线程池不仅调整T1,T3产生的时间段,而且它还显着减少了创建线程的数目,看一个例子:
假设一个服务器一天要处理50000个请求,并且每个请求需要一个单独的线程完成。在线程池中,线程数一般是固定的,所以产生线程总数不会超过线程池中线程的数目,而如果服务器不利用线程池来处理这些请求则线程总数为50000。一般线程池大小是远小于50000。所以利用线程池的服务器程序不会为了创建50000而在处理请求时浪费时间,从而提高效率。
代码实现中并没有实现任务接口,而是把Runnable对象加入到线程池管理器(ThreadPool),然后剩下的事情就由线程池管理器(ThreadPool)来完成了
packagemine.util.thread;
importjava.util.LinkedList;
importjava.util.List;
/**
*线程池类,线程管理器:创建线程,执行任务,销毁线程,获取线程基本信息
*/
publicfinalclassThreadPool{
//线程池中默认线程的个数为5
privatestaticintworker_num=5;
//工作线程
privateWorkThread[]workThrads;
//未处理的任务
_task=0;
//任务队列,作为一个缓冲,List线程不安全
privateList<Runnable>taskQueue=newLinkedList<Runnable>();
;
//创建具有默认线程个数的线程池
privateThreadPool(){
this(5);
}
//创建线程池,worker_num为线程池中工作线程的个数
privateThreadPool(intworker_num){
ThreadPool.worker_num=worker_num;
workThrads=newWorkThread[worker_num];
for(inti=0;i<worker_num;i++){
workThrads[i]=newWorkThread();
workThrads[i].start();//开启线程池中的线程
}
}
//单态模式,获得一个默认线程个数的线程池
(){
returngetThreadPool(ThreadPool.worker_num);
}
//单态模式,获得一个指定线程个数的线程池,worker_num(>0)为线程池中工作线程的个数
//worker_num<=0创建默认的工作线程个数
(intworker_num1){
if(worker_num1<=0)
worker_num1=ThreadPool.worker_num;
if(threadPool==null)
threadPool=newThreadPool(worker_num1);
returnthreadPool;
}
//执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
publicvoidexecute(Runnabletask){
synchronized(taskQueue){
taskQueue.add(task);
taskQueue.notify();
}
}
//批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
publicvoidexecute(Runnable[]task){
synchronized(taskQueue){
for(Runnablet:task)
taskQueue.add(t);
taskQueue.notify();
}
}
//批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
publicvoidexecute(List<Runnable>task){
synchronized(taskQueue){
for(Runnablet:task)
taskQueue.add(t);
taskQueue.notify();
}
}
//销毁线程池,该方法保证在所有任务都完成的情况下才销毁所有线程,否则等待任务完成才销毁
publicvoiddestroy(){
while(!taskQueue.isEmpty()){//如果还有任务没执行完成,就先睡会吧
try{
Thread.sleep(10);
}catch(InterruptedExceptione){
e.printStackTrace();
}
}
//工作线程停止工作,且置为null
for(inti=0;i<worker_num;i++){
workThrads[i].stopWorker();
workThrads[i]=null;
}
threadPool=null;
taskQueue.clear();//清空任务队列
}
//返回工作线程的个数
publicintgetWorkThreadNumber(){
returnworker_num;
}
//返回已完成任务的个数,这里的已完成是只出了任务队列的任务个数,可能该任务并没有实际执行完成
(){
returnfinished_task;
}
//返回任务队列的长度,即还没处理的任务个数
publicintgetWaitTasknumber(){
returntaskQueue.size();
}
//覆盖toString方法,返回线程池信息:工作线程个数和已完成任务个数
@Override
publicStringtoString(){
return"WorkThreadnumber:"+worker_num+"finishedtasknumber:"
+finished_task+"waittasknumber:"+getWaitTasknumber();
}
/**
*内部类,工作线程
*/
{
//该工作线程是否有效,用于结束该工作线程
privatebooleanisRunning=true;
/*
*关键所在啊,如果任务队列不空,则取出任务执行,若任务队列空,则等待
*/
@Override
publicvoidrun(){
Runnabler=null;
while(isRunning){//注意,若线程无效则自然结束run方法,该线程就没用了
synchronized(taskQueue){
while(isRunning&&taskQueue.isEmpty()){//队列为空
try{
taskQueue.wait(20);
}catch(InterruptedExceptione){
e.printStackTrace();
}
}
if(!taskQueue.isEmpty())
r=taskQueue.remove(0);//取出任务
}
if(r!=null){
r.run();//执行任务
}
finished_task++;
r=null;
}
}
//停止工作,让该线程自然执行完run方法,自然结束
publicvoidstopWorker(){
isRunning=false;
}
}
}