python豆瓣爬虫
⑴ python爬虫如何抓取豆瓣影评中的所有数据
你可以用前嗅爬虫采集豆瓣的影评,我之前用的,还可以过滤只采集评分在6分以上的所有影评,非常强大,而且他们软件跟数据库对接,采集完数据后,直接入库,导出excel表。很省心。
⑵ python为什么叫爬虫
因为python的脚本特性,易于配置,对字符的处理也非常灵活,就像虫子一样灵活,故名爬虫。
Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。
Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。
扩展资料
Python的设计目标之一是让代码具备高度的可阅读性。它设计时尽量使用其它语言经常使用的标点符号和英文单字,让代码看起来整洁美观。它不像其他的静态语言如C、Pascal那样需要重复书写声明语句,也不像它们的语法那样经常有特殊情况和意外。
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。
并且Python语言利用缩进表示语句块的开始和退出(Off-side规则),而非使用花括号或者某种关键字。增加缩进表示语句块的开始,而减少缩进则表示语句块的退出。缩进成为了语法的一部分。
例如if语句:python3。
⑶ python爬虫小白求帮助:爬取豆瓣网的内容 不知道哪里出问题了 只能print一行
只获取到一个movie_name 和 一个movies_score,然后遍历这两个值,循环一定是只走两遍。不知道你这个是不是豆瓣top250 我看页面元素好像不对了
⑷ 如何用Python爬虫抓取网页内容
首先,你要安装requests和BeautifulSoup4,然后执行如下代码.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#标题
H1=soup.select('#artibodyTitle')[0].text
#来源
time_source=soup.select('.time-source')[0].text
#来源
origin=soup.select('#artibodyp')[0].text.strip()
#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()
#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text
这样就可以了
⑸ 如何用Python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
⑹ python豆瓣读书爬虫与数据分析可做毕业设计吗
可以,全面分析即可
⑺ python爬虫怎么处理豆瓣网页异常请求
1.URLError
首先解释下URLError可能产生的原因:
网络无连接,即本机无法上网
连接不到特定的服务器
服务器不存在
在代码中,我们需要用try-except语句来包围并捕获相应的异常。下面是一个例子,先感受下它的风骚
Python
1
2
3
4
5
6
7
import urllib2
requset = urllib2.Request('http://www.xxxxx.com')
try:
urllib2.urlopen(requset)
except urllib2.URLError, e:
print e.reason
我们利用了 urlopen方法访问了一个不存在的网址,运行结果如下:
Python
1
[Errno 11004] getaddrinfo failed
它说明了错误代号是11004,错误原因是 getaddrinfo failed
2.HTTPError
HTTPError是URLError的子类,在你利用urlopen方法发出一个请求时,服务器上都会对应一个应答对象response,其中它包含一个数字”状态码”。举个例子,假如response是一个”重定向”,需定位到别的地址获取文档,urllib2将对此进行处理。
其他不能处理的,urlopen会产生一个HTTPError,对应相应的状态吗,HTTP状态码表示HTTP协议所返回的响应的状态。下面将状态码归结如下:
100:继续 客户端应当继续发送请求。客户端应当继续发送请求的剩余部分,或者如果请求已经完成,忽略这个响应。
101: 转换协议 在发送完这个响应最后的空行后,服务器将会切换到在Upgrade 消息头中定义的那些协议。只有在切换新的协议更有好处的时候才应该采取类似措施。
102:继续处理 由WebDAV(RFC 2518)扩展的状态码,代表处理将被继续执行。
200:请求成功 处理方式:获得响应的内容,进行处理
201:请求完成,结果是创建了新资源。新创建资源的URI可在响应的实体中得到 处理方式:爬虫中不会遇到
202:请求被接受,但处理尚未完成 处理方式:阻塞等待
204:服务器端已经实现了请求,但是没有返回新的信 息。如果客户是用户代理,则无须为此更新自身的文档视图。 处理方式:丢弃
300:该状态码不被HTTP/1.0的应用程序直接使用, 只是作为3XX类型回应的默认解释。存在多个可用的被请求资源。 处理方式:若程序中能够处理,则进行进一步处理,如果程序中不能处理,则丢弃
301:请求到的资源都会分配一个永久的URL,这样就可以在将来通过该URL来访问此资源 处理方式:重定向到分配的URL
302:请求到的资源在一个不同的URL处临时保存 处理方式:重定向到临时的URL
304:请求的资源未更新 处理方式:丢弃
400:非法请求 处理方式:丢弃
401:未授权 处理方式:丢弃
403:禁止 处理方式:丢弃
404:没有找到 处理方式:丢弃
500:服务器内部错误 服务器遇到了一个未曾预料的状况,导致了它无法完成对请求的处理。一般来说,这个问题都会在服务器端的源代码出现错误时出现。
501:服务器无法识别 服务器不支持当前请求所需要的某个功能。当服务器无法识别请求的方法,并且无法支持其对任何资源的请求。
502:错误网关 作为网关或者代理工作的服务器尝试执行请求时,从上游服务器接收到无效的响应。
503:服务出错 由于临时的服务器维护或者过载,服务器当前无法处理请求。这个状况是临时的,并且将在一段时间以后恢复。
HTTPError实例产生后会有一个code属性,这就是是服务器发送的相关错误号。
因为urllib2可以为你处理重定向,也就是3开头的代号可以被处理,并且100-299范围的号码指示成功,所以你只能看到400-599的错误号码。
下面我们写一个例子来感受一下,捕获的异常是HTTPError,它会带有一个code属性,就是错误代号,另外我们又打印了reason属性,这是它的父类URLError的属性。
Python
1
2
3
4
5
6
7
8
import urllib2
req = urllib2.Request('httt/cqcre')
try:
urllib2.urlopen(req)
except urllib2.HTTPError, e:
print e.code
print e.reason
运行结果如下
Python
1
2
403
Forbidden
错误代号是403,错误原因是Forbidden,说明服务器禁止访问。
我们知道,HTTPError的父类是URLError,根据编程经验,父类的异常应当写到子类异常的后面,如果子类捕获不到,那么可以捕获父类的异常,所以上述的代码可以这么改写
Python
1
2
3
4
5
6
7
8
9
10
11
import urllib2
req = urllib2.Request('hcqcre')
try:
urllib2.urlopen(req)
except urllib2.HTTPError, e:
print e.code
except urllib2.URLError, e:
print e.reason
else:
print "OK"
如果捕获到了HTTPError,则输出code,不会再处理URLError异常。如果发生的不是HTTPError,则会去捕获URLError异常,输出错误原因。
另外还可以加入 hasattr属性提前对属性进行判断,代码改写如下
Python
1
2
3
4
5
6
7
8
9
10
11
12
import urllib2
req = urllib2.Request('httcqcre')
try:
urllib2.urlopen(req)
except urllib2.URLError, e:
if hasattr(e,"code"):
print e.code
if hasattr(e,"reason"):
print e.reason
else:
print "OK"
首先对异常的属性进行判断,以免出现属性输出报错的现象。
以上,就是对URLError和HTTPError的相关介绍,以及相应的错误处理办法,小伙伴们加油!
⑻ python爬取豆瓣影评,对于有基础知识的爬虫新手来说难度怎么样
最难五颗星,豆瓣影评最多2颗星。
⑼ python爬虫爬取豆瓣影评返回403怎么办,代理IP和cookie都设置了
如果只是爬取影评的话,没必要登录。
返回的304是你的cookie用的是旧的。
去掉cookie,正常抓取就可以了。