python历史数据
Ⅰ python中,同一组数据用历史模拟法和参数法求VaR结果一样吗
一样。
历史模拟法是一个简单的、非理论的方法,有些金融商品不易取得完整的历史交易资料,此时可以借由搜集此金融商品之风险因子计算过去一段时间内的资产组合风险收益的频率分布,通过找到历史资料求出其报酬率,然后搭配目前持有资产的投资组合部位,则可以重新建构资产价值的历史损益分配,然后对资料期间之每一交易日重复分析步骤,如果历史变化重复时,则可以重新建构资产组合未来报酬的损益分配。
参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。
Ⅱ 用python网页爬虫怎么获取到okcoin的历史数据
一,获取整个页面数据
首先我们可以先获取要下载图片的整个页面信息。
getjpg.py
#coding=utf-8
import urllib
def getHtml(url):
page = urllib.urlopen(url)
html = page.read()
return html
print html
Urllib 模块提供了读取web页面数据的接口,我们可以像读取本地文件一样读取www和ftp上的数据。首先,我们定义了一个getHtml()函数:
urllib.urlopen()方法用于打开一个URL地址。
read()方法用于读取URL上的数据,向getHtml()函数传递一个网址,并把整个页面下载下来。执行程序就会把整个网页打印输出。
二,筛选页面中想要的数据
Python 提供了非常强大的正则表达式,我们需要先要了解一点python 正则表达式的知识才行。
假如我们网络贴吧找到了几张漂亮的壁纸,通过到前段查看工具。找到了图片的地址,如:src=”https://gss0..com/70cFfyinKgQFm2e88IuM_a/forum......jpg”pic_ext=”jpeg”
修改代码如下:
import re
import urllib
def getHtml(url):
page = urllib.urlopen(url)
html = page.read()
return html
def getImg(html):
reg = r'src="(.+?\.jpg)" pic_ext'
imgre = re.compile(reg)
imglist = re.findall(imgre,html)
return imglist
print getImg(html)
我们又创建了getImg()函数,用于在获取的整个页面中筛选需要的图片连接。re模块主要包含了正则表达式:
re.compile() 可以把正则表达式编译成一个正则表达式对象.
re.findall() 方法读取html 中包含 imgre(正则表达式)的数据。
运行脚本将得到整个页面中包含图片的URL地址。
三,将页面筛选的数据保存到本地
把筛选的图片地址通过for循环遍历并保存到本地,代码如下:
#coding=utf-8
import urllib
import re
def getHtml(url):
page = urllib.urlopen(url)
html = page.read()
return html
def getImg(html):
reg = r'src="(.+?\.jpg)" pic_ext'
imgre = re.compile(reg)
imglist = re.findall(imgre,html)
x = 0
for imgurl in imglist:
urllib.urlretrieve(imgurl,'%s.jpg' % x)
x+=1
print getImg(html)
这里的核心是用到了urllib.urlretrieve()方法,直接将远程数据下载到本地。
通过一个for循环对获取的图片连接进行遍历,为了使图片的文件名看上去更规范,对其进行重命名,命名规则通过x变量加1。保存的位置默认为程序的存放目录。
程序运行完成,将在目录下看到下载到本地的文件。转载,仅供参考。
Ⅲ 通达信 导出的股票txt历史数据 python怎么读取
.TNC是通达信全功能软件可以识别,平时用的通达信指标大部分都是.TNC格式。最近,我也是刚发现,又出来了一个.TNI格式,它也属于通达信指标,但不属于全功能软件可识别的指标(你用的肯定是全功能软件),必须用通达信加强版才能打开。也就是说,你要想打开.TNI指标必须用通达信加强版才可以。
Ⅳ 如何让Python记住之前的数据
把输入的数据存储到文件里做持久化存储。
Ⅳ 如何选取过去每个月股票的市值 python
类似,可以修改一下
股票涨跌幅数据是量化投资学习的基本数据资料之一,下面以python代码编程为工具,获得所需要的历史数据。主要步骤有:
(1) #按照市值从小到大的顺序活得N支股票的代码;
(2) #分别对这一百只股票进行100支股票操作;
(3) #获取从2016.05.01到2016.11.17的涨跌幅数据;
(4) #选取记录大于40个的数据,去除次新股;
(5) #将文件名名为“股票代码.csv”。
具体代码如下:
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 23:04:33 2016
获取股票的历史涨跌幅,并分别存为csv格式
@author: yehxqq151376026
"""
import numpy as np
import pandas as pd
#按照市值从小到大的顺序活得100支股票的代码
df = get_fundamentals(
query(fundamentals.eod_derivative_indicator.market_cap)
.order_by(fundamentals.eod_derivative_indicator.market_cap.asc())
.limit(100),'2016-11-17', '1y'
)
#分别对这一百只股票进行100支股票操作
#获取从2016.05.01到2016.11.17的涨跌幅数据
#选取记录大于40个的数据,去除次新股
#将文件名名为“股票代码.csv”
for stock in range(100):
priceChangeRate = get_price_change_rate(df['market_cap'].columns[stock], '20160501', '20161117')
if priceChangeRate is None:
openDays = 0
else:
openDays = len(priceChangeRate)
if openDays > 40:
tempPrice = priceChangeRate[39:(openDays - 1)]
for rate in range(len(tempPrice)):
tempPrice[rate] = "%.3f" %tempPrice[rate]
fileName = ''
fileName = fileName.join(df['market_cap'].columns[i].split('.')) + '.csv'
fileName
tempPrice.to_csv(fileName)
Ⅵ 如何用python 读OPC(OLE for Process Control)历史数据
服务器那边会有一个DLL文件,在客户端引用以后,就可以调用里面的方法和函数
Ⅶ windpy python w.wsd获取哪些历史行情数据
获取哪些历史行情数据
结果显示:
[html]
root@zhou:/home/zhouqian/python# py value_keys.py test.txt
ssss
2 key3 => ['6', '33']
3 key2 => ['1', '2', '45']
3 key1 => ['4', '5', '13']
遇到的问题总结:
split的用法:line.split()就是分开出左右两边的值,在默认的情况下是以一个空格或者多个空格为分割符的,
has_key()的用法:是查看字典数据类型中有没有这么一个关键字。上面可知result={}是初始化了一个字典的数据类型。
Ⅷ 如何用python 取所有股票一段时间历史数据
各种股票软件,例如通达信、同花顺、大智慧,都可以实时查看股票价格和走势,做一些简单的选股和定量分析,但是如果你想做更复杂的分析,例如回归分析、关联分析等就有点捉襟见肘,所以最好能够获取股票历史及实时数据并存储到数据库,然后再通过其他工具,例如SPSS、SAS、EXCEL或者其他高级编程语言连接数据库获取股票数据进行定量分析,这样就能实现更多目的了。
Ⅸ python可以读取到国内期货历史tick数据吗
历史tick数据是需要花钱买的。和用什么软件没关系。
Ⅹ python的QSTK中,里面股票的历史数据是包含在包里面么,还是通过网络获取
在 Python的QSTK中,是通过 s_datapath 变量,定义相应股票数据所在的文件夹。一般可以通过 QSDATA 这个环境变量来设置对应的数据文件夹。
具体的股票数据来源,例如沪深、港股等市场,你可以使用免费的WDZ程序输出相应日线、5分钟数据到 s_datapath 变量所指定的文件夹中。然后可使用 Python的QSTK中,qstkutil.DataAccess进行数据访问。