pythonzeros
① 如何用 python 实现一个抠图功能
要制作这样的组合图其实很简单,最主要用到的就是美图秀秀独家新增的“添加前景”按钮。当然,组合之前需要多抠取几张图片备用。
每抠好一张图片后单击“完成抠图”,软件就会将抠图保存了。
② Python小问题
出现这个问题是因为索引出现了浮点数,不是索引允许的数据类型,可以验证一下
importnumpyasnp
y=np.zeros(shape=(1,5))
arr=[nforninnp.linspace(1,5,5)]
arr里存储的就是源代码中会用的索引,下图是结果
importnumpyasnp
y=np.zeros(shape=(1,5))
forninnp.int16(np.linspace(1,5,5)):
y[0,n-1]=n**2
print(y)
③ 想用python处理比较大的单色图片文件,如何提高速度
你好,你可以考虑使用numpy的函数来做,下面是例子的python代码
image=np.zeros((400,400,3),dtype="uint8")
raw=image.()
image[np.where((image==[0,0,0]).all(axis=2))]=[255,255,255]
cv2.imshow('Test0',image)
lower_black=np.array([0,0,0],dtype="uint16")
upper_black=np.array([70,70,70],dtype="uint16")
black_mask=cv2.inRange(image,lower_black,upper_black)
image[np.where((image==[0,0,0]).all(axis=2))]=[155,255,155]
black_mask[np.where(black_mask==[0])]=[155]
你把上面的那个image的数值改成你需要改的目标就可以直接替换了。
④ python np.zeros ValueError: array is too big.
这个库我没用过,不过一般产生这个问题,可能因为是array内部有限制,两种方法:
一种是找到代码中限制的地方,看看如果去掉的话会不会有问题。
另一种就是把这个array分成多个array进行操作。
如果解决了您的问题请采纳!
如果未解决请继续追问
⑤ 怎样用python构建一个卷积神经网络模型
上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出。实验输入仍然采用MNIST图像使用10个feature map时,卷积和pooling的结果分别如下所示。
部分源码如下:
[python]view plain
#coding=utf-8
'''''
Createdon2014年11月30日
@author:Wangliaofan
'''
importnumpy
importstruct
importmatplotlib.pyplotasplt
importmath
importrandom
import
#test
defsigmoid(inX):
if1.0+numpy.exp(-inX)==0.0:
return999999999.999999999
return1.0/(1.0+numpy.exp(-inX))
defdifsigmoid(inX):
returnsigmoid(inX)*(1.0-sigmoid(inX))
deftangenth(inX):
return(1.0*math.exp(inX)-1.0*math.exp(-inX))/(1.0*math.exp(inX)+1.0*math.exp(-inX))
defcnn_conv(in_image,filter_map,B,type_func='sigmoid'):
#in_image[num,featuremap,row,col]=>in_image[Irow,Icol]
#featuresmap[kfilter,row,col]
#type_func['sigmoid','tangenth']
#out_feature[kfilter,Irow-row+1,Icol-col+1]
shape_image=numpy.shape(in_image)#[row,col]
#print"shape_image",shape_image
shape_filter=numpy.shape(filter_map)#[kfilter,row,col]
ifshape_filter[1]>shape_image[0]orshape_filter[2]>shape_image[1]:
raiseException
shape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)
out_feature=numpy.zeros(shape_out)
k,m,n=numpy.shape(out_feature)
fork_idxinrange(0,k):
#rotate180tocalculateconv
c_filter=numpy.rot90(filter_map[k_idx,:,:],2)
forr_idxinrange(0,m):
forc_idxinrange(0,n):
#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))
conv_temp=numpy.dot(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)
sum_temp=numpy.sum(conv_temp)
iftype_func=='sigmoid':
out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])
eliftype_func=='tangenth':
out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])
else:
raiseException
returnout_feature
defcnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):
k,row,col=numpy.shape(out_feature)
max_index_Matirx=numpy.zeros((k,row,col))
out_row=int(numpy.floor(row/pooling_size))
out_col=int(numpy.floor(col/pooling_size))
out_pooling=numpy.zeros((k,out_row,out_col))
fork_idxinrange(0,k):
forr_idxinrange(0,out_row):
forc_idxinrange(0,out_col):
temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]
out_pooling[k_idx,r_idx,c_idx]=numpy.amax(temp_matrix)
max_index=numpy.argmax(temp_matrix)
#printmax_index
#printmax_index/pooling_size,max_index%pooling_size
max_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1
returnout_pooling,max_index_Matirx
defpoolwithfunc(in_pooling,W,B,type_func='sigmoid'):
k,row,col=numpy.shape(in_pooling)
out_pooling=numpy.zeros((k,row,col))
fork_idxinrange(0,k):
forr_idxinrange(0,row):
forc_idxinrange(0,col):
out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])
returnout_pooling
#out_featureistheoutputofconv
defbackErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):
k1,row,col=numpy.shape(out_feature)
error_conv=numpy.zeros((k1,row,col))
k2,theta_row,theta_col=numpy.shape(theta)
ifk1!=k2:
raiseException
foridx_kinrange(0,k1):
foridx_rowinrange(0,row):
foridx_colinrange(0,col):
error_conv[idx_k,idx_row,idx_col]=
max_index_Matirx[idx_k,idx_row,idx_col]*
float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*
difsigmoid(out_feature[idx_k,idx_row,idx_col])
returnerror_conv
defbackErrorfromConvToInput(theta,inputImage):
k1,row,col=numpy.shape(theta)
#print"theta",k1,row,col
i_row,i_col=numpy.shape(inputImage)
ifrow>i_roworcol>i_col:
raiseException
filter_row=i_row-row+1
filter_col=i_col-col+1
detaW=numpy.zeros((k1,filter_row,filter_col))
#thesamewithconvvalidinmatlab
fork_idxinrange(0,k1):
foridx_rowinrange(0,filter_row):
foridx_colinrange(0,filter_col):
subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]
#print"subInputMatrix",numpy.shape(subInputMatrix)
#rotatetheta180
#printnumpy.shape(theta)
theta_rotate=numpy.rot90(theta[k_idx,:,:],2)
#print"theta_rotate",theta_rotate
dotMatrix=numpy.dot(subInputMatrix,theta_rotate)
detaW[k_idx,idx_row,idx_col]=numpy.sum(dotMatrix)
detaB=numpy.zeros((k1,1))
fork_idxinrange(0,k1):
detaB[k_idx]=numpy.sum(theta[k_idx,:,:])
returndetaW,detaB
defloadMNISTimage(absFilePathandName,datanum=60000):
images=open(absFilePathandName,'rb')
buf=images.read()
index=0
magic,numImages,numRows,numColumns=struct.unpack_from('>IIII',buf,index)
printmagic,numImages,numRows,numColumns
index+=struct.calcsize('>IIII')
ifmagic!=2051:
raiseException
datasize=int(784*datanum)
datablock=">"+str(datasize)+"B"
#nextmatrix=struct.unpack_from('>47040000B',buf,index)
nextmatrix=struct.unpack_from(datablock,buf,index)
nextmatrix=numpy.array(nextmatrix)/255.0
#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)
#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)
nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)
returnnextmatrix,numImages
defloadMNISTlabels(absFilePathandName,datanum=60000):
labels=open(absFilePathandName,'rb')
buf=labels.read()
index=0
magic,numLabels=struct.unpack_from('>II',buf,index)
printmagic,numLabels
index+=struct.calcsize('>II')
ifmagic!=2049:
raiseException
datablock=">"+str(datanum)+"B"
#nextmatrix=struct.unpack_from('>60000B',buf,index)
nextmatrix=struct.unpack_from(datablock,buf,index)
nextmatrix=numpy.array(nextmatrix)
returnnextmatrix,numLabels
defsimpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):
decayRate=0.01
MNISTimage,num1=loadMNISTimage("F:\train-images-idx3-ubyte",imageNum)
printnum1
row,col=numpy.shape(MNISTimage[0,0,:,:])
out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)
MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)
MLP.setTrainDataNum(imageNum)
MLP.loadtrainlabel("F:\train-labels-idx1-ubyte")
MLP.initialweights()
#MLP.printWeightMatrix()
rng=numpy.random.RandomState(23455)
W_shp=(numofFilter,filter_size,filter_size)
W_bound=numpy.sqrt(numofFilter*filter_size*filter_size)
W_k=rng.uniform(low=-1.0/W_bound,high=1.0/W_bound,size=W_shp)
B_shp=(numofFilter,)
B=numpy.asarray(rng.uniform(low=-.5,high=.5,size=B_shp))
cIter=0
whilecIter<maxIter:
cIter+=1
ImageNum=random.randint(0,imageNum-1)
conv_out_map=cnn_conv(MNISTimage[ImageNum,0,:,:],W_k,B,"sigmoid")
out_pooling,max_index_Matrix=cnn_maxpooling(conv_out_map,2,"max")
pool_shape=numpy.shape(out_pooling)
MLP_input=out_pooling.reshape(1,1,out_Di)
#printnumpy.shape(MLP_input)
DetaW,DetaB,temperror=MLP.backwardPropogation(MLP_input,ImageNum)
ifcIter%50==0:
printcIter,"Temperror:",temperror
#printnumpy.shape(MLP.Theta[MLP.Nl-2])
#printnumpy.shape(MLP.Ztemp[0])
#printnumpy.shape(MLP.weightMatrix[0])
theta_pool=MLP.Theta[MLP.Nl-2]*MLP.weightMatrix[0].transpose()
#printnumpy.shape(theta_pool)
#print"theta_pool",theta_pool
temp=numpy.zeros((1,1,out_Di))
temp[0,:,:]=theta_pool
back_theta_pool=temp.reshape(pool_shape)
#print"back_theta_pool",numpy.shape(back_theta_pool)
#print"back_theta_pool",back_theta_pool
error_conv=backErrorfromPoolToConv(back_theta_pool,max_index_Matrix,conv_out_map,2)
#print"error_conv",numpy.shape(error_conv)
#printerror_conv
conv_DetaW,conv_DetaB=backErrorfromConvToInput(error_conv,MNISTimage[ImageNum,0,:,:])
#print"W_k",W_k
#print"conv_DetaW",conv_DetaW
⑥ python中如何生成一个全是0和1的矩阵
溢出测试时,常常需要生成一长串字符串去填充缓冲区,用循环的话比较麻烦。python中直接可以用乘号来操作字符串:
shellcode = 'x90' * 1000
执行后,shellcode的值为1000个x90。
同时也可以用加号来操作字符串,连接两个字符串的例子如下:
import struct
buffer = 'A' * 100
jmpesp = struct('<L', 0x7ffa4512) #将0x7ffa4512转化为x12x45xfax7f的格式
buffer += jmpesp
⑦ python中向量指的是什么意思
一、向量是什么
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)
在这里,向量即一维数组,用 arange 函数创建向量是最简单的方式之一:
arange函数也可以指定初始值、终止值和步长来创建一维数组:
向量还能直接对每个元素进行运算:
二、创建向量
上面使用 arange 则是创建向量的一种方式,其实只要是数组创建的函数均可以创建向量,如:
linspace() 函数
前文介绍:linspace 通过制定初始值、终止值和元素个数创建等差数列向量,通过endpoint 参数指定是否包含终止值,默认为True
logspace() 函数
同linspace,创建等比数列,基数通过base参数指定,默认基数为10
zeros() 函数和 ones() 函数
这两个函数分别可以创建指定长度或形状的全0或全1的 ndarray 数组,比如:
指定数据类型:
empty() 函数
这个函数可以创建一个没有任何具体值的 ndarray 数组,例如:
random.randn() 函数
randn 是 numpy.random 中生成正态分布随机数据的函数
fromstring() 函数
从字符串创建数组
上面从字符串创建的数组,定义为整形8bit,创建出来的其实就是字符串的ASCII 码
fromfunction() 函数
从函数创建数组,是数据分析常见的方法
可先定义一个从下标计算数值的函数,然后用fromfunction 创建数组
fromfunction 第一个参数为计算每个数组元素的函数名,第二个参数指定数组的形状。因为它支持多维数组,所以第二个参数必须是一个序列。
例如我创建一个九九乘法表:
注意,fromfunction 函数中的第二个参数指定的是数组的下标,下标作为实参通过遍历的方式传递给函数的形参。
众多python培训视频,尽在python学习网,欢迎在线学习!
⑧ python 怎么遍历numpy.zeros
遍历一般是数列,而不是某个文件,如果是文件的话,你需要打开用with open()as 方法
⑨ python中np.zeros什么意思
zeros(m, n); % 生成一个m*n的零矩阵zeros(m); % 生成一个m*m的零矩阵(即m阶方阵)zeros(m, n, k, ...); % 生成一个m*n*k*...的零矩阵zeros(size(A)); % 生成一个与矩阵A的维度一致的零矩阵