当前位置:首页 » 编程语言 » python开源框架

python开源框架

发布时间: 2022-06-19 16:32:09

㈠ github上有哪些开源的python机器学习

1. Scikit-learn
Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN。而且也设计出了Python numerical和scientific libraries Numpy and Scipy
2.Pylearn2
Pylearn是一个让机器学习研究简单化的基于Theano的库程序。
3.NuPIC
NuPIC是一个以HTM学习算法为工具的机器智能平台。HTM是皮层的精确计算方法。HTM的核心是基于时间的持续学习算法和储存和撤销的时空模式。NuPIC适合于各种各样的问题,尤其是检测异常和预测的流数据来源。
4. Nilearn
Nilearn 是一个能够快速统计学习神经影像数据的Python模块。它利用Python语言中的scikit-learn 工具箱和一些进行预测建模,分类,解码,连通性分析的应用程序来进行多元的统计。
5.PyBrain
Pybrain是基于Python语言强化学习,人工智能,神经网络库的简称。 它的目标是提供灵活、容易使用并且强大的机器学习算法和进行各种各样的预定义的环境中测试来比较你的算法。
6.Pattern
Pattern 是Python语言下的一个网络挖掘模块。它为数据挖掘,自然语言处理,网络分析和机器学习提供工具。它支持向量空间模型、聚类、支持向量机和感知机并且用KNN分类法进行分类。
7.Fuel
Fuel为你的机器学习模型提供数据。他有一个共享如MNIST, CIFAR-10 (图片数据集), Google’s One Billion Words (文字)这类数据集的接口。你使用他来通过很多种的方式来替代自己的数据。
8.Bob
Bob是一个免费的信号处理和机器学习的工具。它的工具箱是用Python和C++语言共同编写的,它的设计目的是变得更加高效并且减少开发时间,它是由处理图像工具,音频和视频处理、机器学习和模式识别的大量软件包构成的。
9.Skdata
Skdata是机器学习和统计的数据集的库程序。这个模块对于玩具问题,流行的计算机视觉和自然语言的数据集提供标准的Python语言的使用。
10.MILK
MILK是Python语言下的机器学习工具包。它主要是在很多可得到的分类比如SVMS,K-NN,随机森林,决策树中使用监督分类法。 它还执行特征选择。 这些分类器在许多方面相结合,可以形成不同的例如无监督学习、密切关系金传播和由MILK支持的K-means聚类等分类系统。
11.IEPY
IEPY是一个专注于关系抽取的开源性信息抽取工具。它主要针对的是需要对大型数据集进行信息提取的用户和想要尝试新的算法的科学家。
12.Quepy
Quepy是通过改变自然语言问题从而在数据库查询语言中进行查询的一个Python框架。他可以简单的被定义为在自然语言和数据库查询中不同类型的问题。所以,你不用编码就可以建立你自己的一个用自然语言进入你的数据库的系统。
现在Quepy提供对于Sparql和MQL查询语言的支持。并且计划将它延伸到其他的数据库查询语言。
13.Hebel
Hebel是在Python语言中对于神经网络的深度学习的一个库程序,它使用的是通过PyCUDA来进行GPU和CUDA的加速。它是最重要的神经网络模型的类型的工具而且能提供一些不同的活动函数的激活功能,例如动力,涅斯捷罗夫动力,信号丢失和停止法。
14.mlxtend
它是一个由有用的工具和日常数据科学任务的扩展组成的一个库程序。
15.nolearn
这个程序包容纳了大量能对你完成机器学习任务有帮助的实用程序模块。其中大量的模块和scikit-learn一起工作,其它的通常更有用。
16.Ramp
Ramp是一个在Python语言下制定机器学习中加快原型设计的解决方案的库程序。他是一个轻型的pandas-based机器学习中可插入的框架,它现存的Python语言下的机器学习和统计工具(比如scikit-learn,rpy2等)Ramp提供了一个简单的声明性语法探索功能从而能够快速有效地实施算法和转换。
17.Feature Forge
这一系列工具通过与scikit-learn兼容的API,来创建和测试机器学习功能。
这个库程序提供了一组工具,它会让你在许多机器学习程序使用中很受用。当你使用scikit-learn这个工具时,你会感觉到受到了很大的帮助。(虽然这只能在你有不同的算法时起作用。)
18.REP
REP是以一种和谐、可再生的方式为指挥数据移动驱动所提供的一种环境。
它有一个统一的分类器包装来提供各种各样的操作,例如TMVA, Sklearn, XGBoost, uBoost等等。并且它可以在一个群体以平行的方式训练分类器。同时它也提供了一个交互式的情节。
19.Python 学习机器样品
用亚马逊的机器学习建造的简单软件收集。
20.Python-ELM
这是一个在Python语言下基于scikit-learn的极端学习机器的实现。

㈡ 开源爬虫框架各有什么优缺点

首先爬虫框架有三种

  1. 分布式爬虫:Nutch

  2. JAVA单机爬虫:Crawler4j,WebMagic,WebCollector

  3. 非JAVA单机爬虫:scrapy

第一类:分布式爬虫

优点:

  1. 海量URL管理

  2. 网速快

缺点:

  1. Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。

  2. 用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非。

  3. Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫。

  4. Nutch虽然有一套插件机制,而且作为亮点宣传。可以看到一些开源的Nutch插件,提供精抽取的功能。但是开发过Nutch插件的人都知道,Nutch的插件系统有多蹩脚。利用反射的机制来加载和调用插件,使得程序的编写和调试都变得异常困难,更别说在上面开发一套复杂的精抽取系统了。

  5. Nutch并没有为精抽取提供相应的插件挂载点。Nutch的插件有只有五六个挂载点,而这五六个挂载点都是为了搜索引擎服务的,并没有为精抽取提供挂载点。大多数Nutch的精抽取插件,都是挂载在“页面解析”(parser)这个挂载点的,这个挂载点其实是为了解析链接(为后续爬取提供URL),以及为搜索引擎提供一些易抽取的网页信息(网页的meta信息、text)

  6. 用Nutch进行爬虫的二次开发,爬虫的编写和调试所需的时间,往往是单机爬虫所需的十倍时间不止。了解Nutch源码的学习成本很高,何况是要让一个团队的人都读懂Nutch源码。调试过程中会出现除程序本身之外的各种问题(hadoop的问题、hbase的问题)。

  7. Nutch2的版本目前并不适合开发。官方现在稳定的Nutch版本是nutch2.2.1,但是这个版本绑定了gora-0.3。Nutch2.3之前、Nutch2.2.1之后的一个版本,这个版本在官方的SVN中不断更新。而且非常不稳定(一直在修改)。

第二类:JAVA单机爬虫

优点:

  1. 支持多线程。

  2. 支持代理。

  3. 能过滤重复URL的。

  4. 负责遍历网站和下载页面。爬js生成的信息和网页信息抽取模块有关,往往需要通过模拟浏览器(htmlunit,selenium)来完成。

缺点:

设计模式对软件开发没有指导性作用。用设计模式来设计爬虫,只会使得爬虫的设计更加臃肿。

第三类:非JAVA单机爬虫

优点:

  1. 先说python爬虫,python可以用30行代码,完成JAVA

  2. 50行代码干的任务。python写代码的确快,但是在调试代码的阶段,python代码的调试往往会耗费远远多于编码阶段省下的时间。

  3. 使用python开发,要保证程序的正确性和稳定性,就需要写更多的测试模块。当然如果爬取规模不大、爬取业务不复杂,使用scrapy这种爬虫也是蛮不错的,可以轻松完成爬取任务。

缺点:

  1. bug较多,不稳定。

㈢ 去哪里找python的开源项目

GitHub是一个面向开源及私有软件项目的托管平台,因为只支持git 作为唯一的版本库格式进行托管,故名GitHub。作为开源代码库以及版本控制系统,Github拥有超过900万开发者用户。随着越来越多的应用程序转移到了云上,Github已经成为了管理软件开发以及发现已有代码的首选方法。在GitHub,用户可以十分轻易地找到海量的开源代码。

下面给大家介绍一些GitHub上25个开源项目:

(1)TensorFlow Models

如果你对机器学习和深度学习感兴趣,一定听说过TensorFlow。TensorFlow Models是一个开源存储库,可以找到许多与深度学习相关的库和模型。

(GitHub: https://github.com/tensorflow/models )

(2)Keras

Keras是一个高级神经网络API,用Python编写,能够在TensorFlow,CNTK或Theano之上运行。旨在完成深度学习的快速开发(GitHub: https://github.com/keras-team/keras )

(3)Flask

Flask 是一个微型的 Python 开发的 Web 框架,基于Werkzeug WSGI工具箱和Jinja2 模板引擎,使用BSD授权。

(GitHub: https://github.com/pallets/flask )

(4)scikit-learn

scikit-learn是一个用于机器学习的Python模块,基于 NumPy、SciPy 和 matplotlib 构建。,并遵循 BSD 许可协议。

(GitHub: https://github.com/scikit-learn )

(5)Zulip

Zulip是一款功能强大的开源群聊应用程序,它结合了实时聊天的即时性和线程对话的生产力优势。Zulip作为一个开源项目,被许多世界500强企业,大型组织以及其他需要实时聊天系统的用户选择使用,该系统允许用户每天轻松处理数百或数千条消息。Zulip拥有超过300名贡献者,每月合并超过500次提交,也是规模最大,发展最快的开源群聊项目。

(GitHub: https://github.com/zulip/zulip )

相关推荐:《Python入门教程》

(6)Django

Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC)风格的 Web 应用程序框架,旨在快速开发出清晰,实用的设计。使用 Django,我们在几分钟之内就可以创建高品质、易维护、数据库驱动的应用程序。

(GitHub: https://github.com/django/django )

(7)Rebound

Rebound 是一个当你得到编译错误时即时获取 Stack Overflow 结果的命令行工具。 就用 rebound 命令执行你的文件。这对程序员来说方便了不少。

(GitHub: https://github.com/shobrook/rebound )

(8)Google Images Download

这是一个命令行python程序,用于搜索Google Images上的关键字/关键短语,并可选择将图像下载到您的计算机。你也可以从另一个python文件调用此脚本

(GitHub: https://github.com/hardikvasa/google-images-download )

(9)YouTube-dl

youtube-dl 是基于 Python 的命令行媒体文件下载工具,完全开源免费跨平台。用户只需使用简单命令并提供在线视频的网页地址即可让程序自动进行嗅探、下载、合并、命名和清理,最终得到已经命名的完整视频文件。

(GitHub: htt ps://github.com/rg3/youtube-dl )

(10)System Design Primer

此repo是一个系统的资源集合,可帮助你了解如何大规模构建系统。

(GitHub: https://github.com/donnemartin/system-design-primer )

(11)Mask R-CNN

Mask R-CNN用于对象检测和分割。这是对Python 3,Keras和TensorFlow的Mask R-CNN实现。该模型为图像中对象的每个实例生成边界框和分割蒙版。它基于特Feature Pyramid Network(FPN)和 ResNet101 backbone。

(GitHub: https://github.com/matterport/Mask_RCNN )

(12)Face Recognition

Face Recognition 是一个基于 Python 的人脸识别库,使用十分简便。这还提供了一个简单的face_recognition命令行工具,可以让您从命令行对图像文件夹进行人脸识别!

(GitHub: https://github.com/ageitgey/face_recognition )

(13)snallygaster

用于扫描HTTP服务器上的机密文件的工具。

(GitHub: https://github.com/hannob/snallygaster )

(14)Ansible

Ansible是一个极其简单的IT自动化系统。它可用于配置管理,应用程序部署,云配置,支持远程任务执行和多节点发布 - 包括通过负载平衡器轻松实现零停机滚动更新等操作。

(GitHub: https://github.com/ansible/ansible )

(15)Detectron

Detectron是Facebook AI 研究院开源的的软件系统,它实现了最先进的目标检测算法,包括Mask R-CNN。它是用Python编写的,由Caffe2深度学习框架提供支持。

(16)asciinema

终端会话记录器和asciinema.org的最佳搭档。

(GitHub: https://github.com/asciinema/asciinema )

(17)HTTPie

HTTPie 是一个开源的命令行的 HTTP 工具包,其目标是使与Web服务的CLI交互尽可能人性化。它提供了一个简单的http命令,允许使用简单自然的语法发送任意HTTP请求,并显示彩色输出。HTTPie可用于测试,调试以及通常与HTTP服务器交互。

(GitHub: https://github.com/jakubroztocil/httpie )

(18)You-Get

You-Get是一个小型命令行实用程序,用于从Web下载媒体内容(视频,音频,图像),支持国内外常用的视频网站。

(GitHub: https://github.com/soimort/you-get )

(19)Sentry

Sentry从根本上讲是一项服务,可以帮助用户实时监控和修复崩溃。基于Django构建,它包含一个完整的API,用于从任何语言、任何应用程序中发送事件。

(GitHub: https://github.com/getsentry/sentry )

(20)Tornado

Tornado是使用Python开发的全栈式(full-stack)Web框架和异步网络库,,最初是由FriendFeed上开发的。通过使用非阻塞网络I / O,Tornado可以扩展到数万个开放连接,是long polling、WebSockets和其他需要为用户维护长连接应用的理想选择。

(GitHub: https://github.com/tornadoweb/tornado )

(21)Magenta

Magenta是一个探索机器学习在创造艺术和音乐过程中的作用的研究项目。这主要涉及开发新的深度学习和强化学习算法,用于生成歌曲,图像,绘图等。但它也是构建智能工具和界面的探索,它允许艺术家和音乐家使用这些模型。

(GitHub: https://github.com/tensorflow/magenta )

(22)ZeroNet

ZeroNet是一个利用比特币的加密算法和BitTorrent技术提供的不受审查的网络,完全开源。

(GitHub: https://github.com/HelloZeroNet/ZeroNet )

(23)Gym

OpenAI Gym是一个用于开发和比较强化学习算法的工具包。这是Gym的开源库,可让让你访问标准化的环境。

(GitHub: https://github.com/openai/gym )

(24)Pandas

Pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。此外,它还有更广泛的目标,即成为所有语言中最强大,最灵活的开源数据分析/操作工具。它目前已经朝着这个目标迈进。

(GitHub: https://github.com/pandas-dev/pandas )

(25)Luigi

Luigi 是一个 Python 模块,可以帮你构建复杂的批量作业管道。处理依赖决议、工作流管理、可视化展示等等,内建 Hadoop 支持。(GitHub: https://github.com/spotify/luigi )

㈣ 编程语言Python有哪些好的Web框架

Python web五大主流框架:

1.Django

㈤ python集成开发环境哪个好

1.Pydev+Eclipse–最好的免费pythonIDE

Pydev的是Python IDE中使用最普遍的,原因很简单,它是免费的,同时还提供很多强大的功能来支持高效的Python编程。Pydev是一个运行在eclipse上的开源插件,它把python带进了eclipse的王国,如果你本来就是是一个eclipse的用户那么Pydev将给你家里一样的感觉。

Pydev能高居榜首,得益于这些关键功能,包括Django集成、自动代码补全、多语言支持、集成的Python调试、代码分析、代码模板、智能缩进、括号匹配、错误标记、源代码控制集成、代码折叠、UML编辑和查看和单元测试整合等。

2.PyCharm–最好的商业pythonIDE

PyCharm是专业的python集成开发环境,有两个版本。一个是免费的社区版本,另一个是面向企业开发者的更先进的专业版本。

大部分的功能在免费版本中都是可用的,包括智能代码补全、直观的项目导航、错误检查和修复、遵循PEP8规范的代码质量检查、智能重构,图形化的调试器和运行器。它还能与IPython notebook进行集成,并支持Anaconda及其他的科学计算包,比如matplotlib和NumPy。

PyCharm专业版本支持更多高级的功能,比如远程开发功能、数据库支持以及对web开发框架的支持等。

3.VIM

VIM是一个很先进的文本编辑器,在python开发者社区中很受欢迎。它是一个开源软件并遵循GPL协议,所以你可以免费的使用它。

虽然VIM是最好的文本编辑器,但是它提供的功能不亚于此,经过正确的配置后它可以成为一个全功能的Python开发环境。此外VIM还是一个轻量级的、模块化、快速响应的工具,非常适合那些很牛的程序员—编程从不用鼠标的人。

4.WingIDE

WingIDE是另外一个商业的、面向专业开发人员的python集成开发环境,可以运行在windows、OS X和Linux系统上,支持最新版本的python,包括stacklessPython。Wing IDE分三个版本:免费的基础版,个人版以及更强大的专业版。

调试功能是Wing IDE的一大亮点,包括多线程调试,线程代码调试,自动子进程调试,断点,单步代码调试,代码数据检查等功能,此外还提供了在树莓派上进行远程调试的功能。

5.SpyderPython

Spyder Python是一个开源的python集成开发环境,非常适合用来进行科学计算方面的python开发。是一个轻量级的软件,是用python开发的,遵循MIT协议,可免费使用。

Spyderpython的基本功能包括多语言编辑器、交互式控制台、文件查看、variableexplorer、文件查找、文件管理等。Spyder IDE也可以运行于windows、Mac或者Linux系统之上。

6.KomodoIDE

Komodo是Activestate公司开发的一个跨平台的集成开发环境,支持多种语言包括python。它是商用产品,但是提供了开源的免费版本叫Komodo Edit,能够安装在Mac、Windows和Linux系统上。

和大多数的专业python IDE一样,Komodo也提供了代码重构,自动补全,调用提示,括号匹配,代码浏览器,代码跳转,图形化调试,多进程调试,多线程调试,断点,代码分析,集成测试单元等功能,并且集成其他的第三方库,比如pyWin32。

7.PTVS-BestPythonIDEforWindows

PTVS集成在VisualStudio中,就像Pydev可以集成在eclipse中一样。PTVS将Visual Studio变成了一个强大的、功能丰富的python集成开发环境,并且它是开源的,完全的免费。PTVS发布于2015年,由社区和微软自己在维护。

8.EricPython

Eric是一个开源python代码编辑器和集成开发环境,提供很多高效编程需要的功能。它是纯python编写的,基于Qt GUI并集成强大的Scintilla编辑器功能。

Eric由Detlev Offenbach创建,遵循GPL协议,免费使用。经过多年的开发完善Eric已经成为一个常用的、功能丰富的集成开发环境。它提供一个可靠的插件管理系统,可以通过插件来扩展功能。

Eric提供所有的基础功能,比如调用提示、代码折叠、代码高亮、类浏览器、代码覆盖及分析等等。

9.SublimeText3

SublimeText3是目前为止功能最强大的跨平台的、轻量级的代码编辑器。通过添加插件SublimeText3可以成一个全功能的python IDE。

10.Emacs-PythonEditorcumIDE

Emacs有属于它自己的生态系统,它是一个可扩展的并能高度定制的GNU文本编辑器。它可以配置为一个全功能的免费的python集成开发环境。

Emacs在python开发中很受欢迎,他通过python-mode提供开箱即用的python。Emacs可以通过额外的扩展包来增加更多的高级功能。

㈥ python有什么开源的项目管理的系统吗

1。 在数据获取方面强烈推荐使用TuShare 2。 在我们A股推荐成熟的pyalgotrade 3。测试策略 如:Ricequant 4。恒生的python-恒生量化社区 5。python的量化回测框架 QuantDigger

㈦ 最受欢迎的 15 大 Python 库有哪些

1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。
2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。
3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。
4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。
5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。
6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。
7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。
8、Scikits:是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。
9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。
10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。
11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。
12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。
13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。

㈧ Python必学的模块有哪些

简单来说,模块就是一堆代码实现某个功能,它们是已经写好的.py文件,在我们的.py文件中只需要用import导入模块就能使用它的功能了。

Python中的模块有内置标准模块、开源模块和自定义模块。

内置标准模块就是Python自带的模块,即下载好Python就可以直接导入使用的模块,例如我们之前使用过的math模块、time模块等。

开源模块就是不收费的由好心人写好的模块,我们可以通过下载这些模块后导入使用,开源模块一般也被我们称为第三方模块,例如数据处理工具NumPy、Pandas,以及深度学习着名框架Tensorflow都属于开源模块。

自定义模块与开源模块相对应,开源模块是他人写的,而自定义模块就是自己写好的模块。

Python常见的三个模块

一、time与datetime模块

在Python中,通常有这几种方式来表示时间:

  • 时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

  • 格式化的时间字符串(Format String)

  • 结构化的时间(struct_time):struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天,夏令时)

二、random模块

三、os模块

os模块是与操作系统交互的一个接口

㈨ Python 有像WordPress这样的开源程序么

python的开源程序很多,除了wordpress外还有如下:
Django: Python Web应用开发框架
Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。
Diesel:基于Greenlet的事件I/O框架
Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。
Flask:一个用Python编写的轻量级Web应用框架
Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2 模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Cubes:轻量级Python OLAP框架
Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。
Kartograph.py:创造矢量地图的轻量级Python框架
Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。
Pulsar:Python的事件驱动并发框架
Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。
Web2py:全栈式Web框架
Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。
Falcon:构建云API和网络应用后端的高性能Python框架
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
Dpark:Python版的Spark
DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。
Buildbot:基于Python的持续集成测试框架
Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。
Zerorpc:基于ZeroMQ的高性能分布式RPC框架
Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。
Bottle: 微型Python Web框架
Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
Tornado:异步非阻塞IO的Python Web框架
Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。
webpy: 轻量级的Python Web框架
webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。
Scrapy:Python的爬虫框架
Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。

热点内容
开源库编译管理员 发布:2025-02-06 09:39:14 浏览:913
脸书怎么注册安卓 发布:2025-02-06 09:36:47 浏览:380
车用安卓导航无线打不开什么原因 发布:2025-02-06 09:27:50 浏览:789
安卓与苹果如何互相传送文件 发布:2025-02-06 09:27:40 浏览:25
华为服务器盘符如何分配 发布:2025-02-06 09:26:41 浏览:559
传奇h5源码下载 发布:2025-02-06 09:26:06 浏览:77
编译uclibc 发布:2025-02-06 09:09:04 浏览:150
用gcc编译16位汇编 发布:2025-02-06 09:06:07 浏览:822
什么低端安卓手机不卡 发布:2025-02-06 09:03:32 浏览:13
我的世界服务器卡领地 发布:2025-02-06 08:50:45 浏览:255