python识别图片
‘壹’ python2.7 ocr 文本识别 怎么弄的啊
《PandaOCR v2.7图片文字识别》网络网盘资源免费下载:
链接: https://pan..com/s/1nsqG9Fs5lLED4mCe798Nfw
PandaOCR v2.7最新版是一款专注于OCR 文字识别的免费软件,支持多功能 OCR 识别、即时翻译和朗读等。软件的功能非常的多并且强大,能够进行截图内容识别,剪切OCR识别还有各种图片内容识别,能够帮助用户非常快捷方便的将文本,图纸或者图片内的文字识别出来给用户免费使用,这样就不需要用户去看着文字一个字一个字的手打出来,非常的节省用户的工作时间。
‘贰’ 识别图片的python代码
网址403权限错误。
如果是个人网站,建议检查;如果仅仅是为了测试,建议将图片上传到图床上测试。
提问时建议隐藏API_ID和API_KEY,保护自己的信息。
‘叁’ Python如何图像识别
首先,先定位好问题是属于图像识别任务中的哪一类,最好上传一张植物叶子的图片。因为目前基于深度学习的卷积神经网络(CNN)确实在图像识别任务中取得很好的效果,深度学习属于机器学习,其研究的范式,或者说处理图像的步骤大体上是一致的。
1、第一步,准备好数据集,这里是指,需要知道输入、输出(视任务而定,针对你这个问题,建议使用有监督模型)是什么。你可以准备一个文件夹,里面存放好植物叶子的图像,而每张图像对应一个标签(有病/没病,或者是多类别标签,可能具体到哪一种病)。
具体实现中,会将数据集分为三个:训练集(计算模型参数)、验证集(调参,这个经常可以不需要实现划分,在python中可以用scikit-learn中的函数解决。测试集用于验证模型的效果,与前面两个的区别是,模型使用训练集和验证集时,是同时使用了输入数据和标签,而在测试阶段,模型是用输入+模型参数,得到的预测与真实标签进行对比,进而评估效果。
2、确定图像识别的任务是什么?
图像识别的任务可以分为四个:图像分类、目标检测、语义分割、实例分割,有时候是几个任务的结合。
图像分类是指以图像为输入,输出对该图像内容分类的描述,可以是多分类问题,比如猫狗识别。通过足够的训练数据(猫和狗的照片-标签,当然现在也有一系列的方法可以做小样本训练,这是细节了,这里并不敞开讲),让计算机/模型输出这张图片是猫或者狗,及其概率。当然,如果你的训练数据还有其它动物,也是可以的,那就是图像多分类问题。
目标检测指将图像或者视频中的目标与不感兴趣的部分区分开,判断是否存在目标,并确定目标的具体位置。比如,想要确定这只狗所佩戴的眼睛的位置,输入一张图片,输出眼睛的位置(可视化后可以讲目标区域框出来)。
看到这里,应该想想植物叶子诊断疾病的问题,只需要输入一整张植物叶子的图片,输出是哪种疾病,还是需要先提取叶子上某些感兴趣区域(可能是病变区域),在用病变区域的特征,对应到具体的疾病?
语义分割是当今计算机视觉领域的关键问题之一,宏观上看,语义分割是一项高层次的任务。其目的是以一些原始图像作为输入,输出具有突出显示的感兴趣的掩膜,其实质上是实现了像素级分类。对于输入图片,输出其舌头区域(注意可以是不规则的,甚至不连续的)。
而实例分割,可以说是在语义分割的基础上,在像素层面给出属于每个实例的像素。
看到这里,可以具体思考下自己的问题是对应其中的哪一类问题,或者是需要几种任务的结合。
3、实际操作
可以先通过一个简单的例子入手,先了解构建这一个框架需要准备什么。手写数字识别可以说是深度学习的入门数据集,其任务也经常作为该领域入门的案例,也可以自己在网上寻找。
‘肆’ python怎么识别图片文字
可以调用opencv来进行识别
‘伍’ 如何python pil开发图像识别
1. 简介。
图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴。PIL (Python Imaging Library)是 Python 中最常用的图像处理库,目前版本为 1.1.7,我们可以在这里下载学习和查找资料。
Image 类是 PIL 库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。
2. 使用。
导入 Image 模块。然后通过 Image 类中的 open 方法即可载入一个图像文件。如果载入文件失败,则会引起一个 IOError ;若无返回错误,则 open 函数返回一个 Image 对象。现在,我们可以通过一些对象属性来检查文件内容,即:
1 >>> import Image
2 >>> im = Image.open("j.jpg")
3 >>> print im.format, im.size, im.mode
4 JPEG (440, 330) RGB
这里有三个属性,我们逐一了解。
format : 识别图像的源格式,如果该文件不是从文件中读取的,则被置为 None 值。
size : 返回的一个元组,有两个元素,其值为象素意义上的宽和高。
mode : RGB(true color image),此外还有,L(luminance),CMTK(pre-press image)。
现在,我们可以使用一些在 Image 类中定义的方法来操作已读取的图像实例。比如,显示最新载入的图像:
1 >>>im.show()
2 >>>
输出原图:
3.5 更多关于图像文件的读取。
最基本的方式:im = Image.open("filename")
类文件读取:fp = open("filename", "rb"); im = Image.open(fp)
字符串数据读取:import StringIO; im = Image.open(StringIO.StringIO(buffer))
从归档文件读取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)
基本的 PIL 目前就练习到这里。其他函数的功能可点击这里进一步阅读。
‘陆’ 这种图片可以用Python自动识别吗
Python图片文本识别使用的工具是PIL和pytesser。因为他们使用到很多的python库文件,为了避免一个个工具的安装,建议使用pythonxy
pytesser是OCR开源项目的一个模块,在Python中导入这个模块即可将图片中的文字转换成文本。pytesser调用了tesseract。当在Python中调用pytesser模块时,pytesser又用tesseract识别图片中的文字。pytesser的使用步骤如下:
首先,安装Python2.7版本,这个版本比较稳定,建议使用这个版本。
其次,安装pythoncv。
然后,安装PIL工具,pytesser的使用需要PIL库的支持。
接着下载pytesser
最后,将pytesser解压,这个是免安装的,可以将解压后的文件cut到Python安装目录的Lib\site-packages下直接使用,比如我的安装目录是:C:\Python27\Lib\site-packages,同时把这个目录添加到环境变量之中。
完成以上步骤之后,就可以编写图片文本识别的Python脚本了。参考脚本如下:
from pytesser import *
import ImageEnhance
image = Image.open('D:\\workspace\\python\\5.png')
#使用ImageEnhance可以增强图片的识别率
enhancer = ImageEnhance.Contrast(image)
image_enhancer = enhancer.enhance(4)
print image_to_string(image_enhancer)
tesseract是谷歌的一个对图片进行识别的开源框架,免费使用,现在已经支持中文,而且识别率非常高,这里简要来个helloworld级别的认识
下载之后进行安装,不再演示。
在tesseract目录下,有个tesseract.exe文件,主要调用这个执行文件,用cmd运行到这个目录下,在这个目录下同时放置一张需要识别的图片,这里是123.jpg
然后运行:tesseract 123.jpg result
会把123.jpg自动识别并转换为txt文件到result.txt
但是此时中文识别不好
然后找到tessdata目录,把eng.traineddata替换为chi_sim.traineddata,并且把chi_sim.traineddata重命名为eng.traineddata
ok,现在中文识别基本达到90%以上了
‘柒’ python怎么识别图片中每个线的基本形状
轮廓搜索
Cv2的方法。findContours用于查找轮廓。代码示例如下:
Cr、t = cv2。cv2 findContours (b。retr_tree cv2.chain_approx_simple) #
第三个参数定义了轮廓的近似方式
在上述函数的参数中,第一个参数是二值化矩阵,第二个参数是获得轮廓的方式,第三个参数是定义轮廓的近似方式。
搜索大纲
Cv2方法。FindContours用于查找contours。代码示例如下:
Cr t等于cv2。Cv2 findContours (b. retr_tree Cv2 .chain_approx_simple) #
第三个参数定义了轮廓的近似方式
上述函数的参数中,第一个参数是二值化矩阵,第二个参数是获取轮廓的方式,第三个参数是定义轮廓的近似方式。