当前位置:首页 » 编程语言 » facepython

facepython

发布时间: 2022-06-06 15:46:10

⑴ 有一张人脸的侧脸图像,如何用python及相关的库来计算人脸转过的角度。

这个很难办到,不过可以通过判断关键点的特点进行判断,但是准确率不高
前言
很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。
一点区分
对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。
所用工具
Anaconda 2——Python 2
Dlib
scikit-image
Dlib
对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:
pip install dlib
上面需要用到的scikit-image同样只是需要这么一句:
pip install scikit-image
注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

人脸识别
之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。
首先先通过文件树看一下今天需要用到的东西:

准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比
CNN 更加强大。
1. 前期准备
shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。
然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。
本文这里准备的是六张图片,如下:

她们分别是

然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。
2.识别流程
数据准备完毕,接下来就是代码了。识别的大致流程是这样的:
3.代码
代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py
# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
print "请检查参数是否正确"
exit()
# 1.人脸关键点检测器
predictor_path = sys.argv[1]
# 2.人脸识别模型
face_rec_model_path = sys.argv[2]
# 3.候选人脸文件夹
faces_folder_path = sys.argv[3]
# 4.需识别的人脸
img_path = sys.argv[4]
# 1.加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 2.加载人脸关键点检测器
sp = dlib.shape_predictor(predictor_path)
# 3. 加载人脸识别模型
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
# win = dlib.image_window()
# 候选人脸描述子list
descriptors = []
# 对文件夹下的每一个人脸进行:
# 1.人脸检测
# 2.关键点检测
# 3.描述子提取
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
print("Processing file: {}".format(f))
img = io.imread(f)
#win.clear_overlay()
#win.set_image(img)
# 1.人脸检测
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
# 2.关键点检测
shape = sp(img, d)
# 画出人脸区域和和关键点
# win.clear_overlay()
# win.add_overlay(d)
# win.add_overlay(shape)
# 3.描述子提取,128D向量
face_descriptor = facerec.compute_face_descriptor(img, shape)
# 转换为numpy array
v = numpy.array(face_descriptor)
descriptors.append(v)
# 对需识别人脸进行同样处理
# 提取描述子,不再注释
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
shape = sp(img, d)
face_descriptor = facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
# 计算欧式距离
for i in descriptors:
dist_ = numpy.linalg.norm(i-d_test)
dist.append(dist_)
# 候选人名单
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
# 候选人和距离组成一个dict
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])
print "\n The person is: ",cd_sorted[0][0]
dlib.hit_enter_to_continue()

4.运行结果
我们在.py所在的文件夹下打开命令行,运行如下命令
python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg
由于shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。
运行结果如下:
The person is Bingbing。
记忆力不好的同学可以翻上去看看test1.jpg是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。
这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。
机器毕竟不是人,机器的智能还需要人来提升。
有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。

⑵ 如何利用python进行精准人脸识别

要调用api接口,建议用face++的,支付宝的人脸识别都是用的这个。可能需要一点费用,不贵,代码里把fece++的api接口放进代码就行,还可以可以检测情绪,年龄等等的。

当然也有其他公司人脸识别的api接口,自己发现吧,其实很多,但基本都不会免费,有的可以试用

⑶ 如何使用Python,基于OpenCV与Face++实现人脸解锁的功能

近几天微软的发布会上讲到了不少认脸解锁的内容,经过探索,其实利用手头的资源我们完全自己也可以完成这样一个过程。

本文讲解了如何使用Python,基于OpenCV与Face++实现人脸解锁的功能。

本文基于Python 2.7.11,Windows 8.1 系统。

主要内容

  • Windows 8.1上配置OpenCV

  • OpenCV的人脸检测应用

  • 使用Face++完成人脸辨识(如果你想自己实现这部分的功能,可以借鉴例如这个项目)

  • Windows 8.1上配置OpenCV

    入门的时候配置环境总是一个非常麻烦的事情,在Windows上配置OpenCV更是如此。

    既然写了这个推广的科普教程,总不能让读者卡在环境配置上吧。

    下面用到的文件都可以在这里(提取码:b6ec)下载,但是注意,目前OpenCV仅支持Python2.7。

    将cv2加入site-packages

    将下载下来的cv2.pyd文件放入Python安装的文件夹下的Libsite-packages目录。

    就我的电脑而言,这个目录就是C:/Python27/Lib/site-packages/。

    记得不要直接使用pip安装,将文件拖过去即可。

    安装numpy组件

    在命令行下进入到下载下来的文件所在的目录(按住Shift右键有在该目录打开命令行的选项)

    键入命令:

    1

  • pip install numpy-1.11.0rc2-cp27-cp27m-win32.whl

  • 如果你的系统或者Python不适配,可以在这里下载别的轮子。

    测试OpenCV安装

    在命令行键入命令:

    1

  • python -c "import cv2"

  • 如果没有出现错误提示,那么cv2就已经安装好了。

    OpenCV的人脸检测应用

    人脸检测应用,简而言之就是一个在照片里找到人脸,然后用方框框起来的过程(我们的相机经常做这件事情)

    那么具体而言就是这样一个过程:

  • 获取摄像头的图片

  • 在图片中检测到人脸的区域

  • 在人脸的区域周围绘制方框

  • 获取摄像头的图片

    这里简单的讲解一下OpenCV的基本操作。

    以下操作是打开摄像头的基本操作:

    1

    2

    3

    4

    5

    6

    7

  • #coding=utf8

    import cv2

    # 一般笔记本的默认摄像头都是0

    capInput = cv2.VideoCapture(0)

    # 我们可以用这条命令检测摄像头是否可以读取数据

    if not capInput.isOpened(): print('Capture failed because of camera')

  • 那么怎么从摄像头读取数据呢?

    1

    2

    3

    4

    5

    6

    7

    8

  • # 接上段程序

    # 现在摄像头已经打开了,我们可以使用这条命令读取图像

    # img就是我们读取到的图像,就和我们使用open('pic.jpg', 'rb').read()读取到的数据是一样的

    ret, img = capInput.read()

    # 你可以使用open的方式存储,也可以使用cv2提供的方式存储

    cv2.imwrite('pic.jpg', img)

    # 同样,你可以使用open的方式读取,也可以使用cv2提供的方式读取

    img = cv2.imread('pic.jpg')

  • 为了方便显示图片,cv2也提供了显示图片的方法:

    1

    2

    3

    4

    5

    6

  • # 接上段程序

    # 定义一个窗口,当然也可以不定义

    imgWindowName = 'ImageCaptured'

    imgWindow = cv2.namedWindow(imgWindowName, cv2.WINDOW_NORMAL)

    # 在窗口中显示图片

    cv2.imshow(imgWindowName, img)

  • 当然在完成所有操作以后需要把摄像头和窗口都做一个释放:

    1

    2

    3

    4

    5

  • # 接上段程序

    # 释放摄像头

    capInput.release()

    # 释放所有窗口

    cv2.destroyAllWindows()

  • 在图片中检测到人脸的区域

    OpenCV给我们提供了已经训练好的人脸的xml模板,我们只需要载入然后比对即可。

    1

    2

    3

    4

    5

    6

    7

    8

  • # 接上段程序

    # 载入xml模板

    faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

    # 将图形存储的方式进行转换

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 使用模板匹配图形

    faces = faceCascade.detectMultiScale(gray, 1.3, 5)

    print(faces)

  • 在人脸的区域周围绘制方框

    在上一个步骤中,faces中的四个量分别为左上角的横坐标、纵坐标、宽度、长度。

    所以我们根据这四个量很容易的就可以绘制出方框。

    1

    2

    3

  • # 接上段程序

    # 函数的参数分别为:图像,左上角坐标,右下角坐标,颜色,宽度

    img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

  • 成果

    根据上面讲述的内容,我们现在已经可以完成一个简单的人脸辨认了:

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

  • #coding=utf8

    import cv2

    print('Press Esc to exit')

    faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

    imgWindow = cv2.namedWindow('FaceDetect', cv2.WINDOW_NORMAL)

    def detect_face():

    capInput = cv2.VideoCapture(0)

    # 避免处理时间过长造成画面卡顿

    nextCaptureTime = time.time()

    faces = []

    if not capInput.isOpened(): print('Capture failed because of camera')

    while 1:

    ret, img = capInput.read()

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    if nextCaptureTime < time.time():

    nextCaptureTime = time.time() + 0.1

    faces = faceCascade.detectMultiScale(gray, 1.3, 5)

    if faces:

    for x, y, w, h in faces:

    img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

    cv2.imshow('FaceDetect', img)

    # 这是简单的读取键盘输入,27即Esc的acsii码

    if cv2.waitKey(1) & 0xFF == 27: break

    capInput.release()

    cv2.destroyAllWindows()

    if __name__ == '__main__':

    detect_face()

  • 使用Face++完成人脸辨识

    第一次认识Face++还是因为支付宝的人脸支付,响应速度还是非常让人满意的。

    现在只需要免费注册一个账号然后新建一个应用就可以使用了,非常方便。

    他的官方网址是这个,注册好之后在这里的我的应用中创建应用即可。

    创建好应用之后你会获得API Key与API Secret。

    Face++的API调用逻辑简单来说是这样的:

  • 上传图片获取读取到的人的face_id

  • 创建Person,获取person_id(Person中的图片可以增加、删除)

  • 比较两个face_id,判断是否是一个人

  • 比较face_id与person_id,判断是否是一个人

  • 上传图片获取face_id

    在将图片通过post方法上传到特定的地址后将返回一个json的值。

    如果api_key, api_secret没有问题,且在上传的图片中有识别到人脸,那么会存储在json的face键值下。

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

  • #coding=utf8

    import requests

    # 这里填写你的应用的API Key与API Secret

    API_KEY = ''

    API_SECRET = ''

    # 目前的API网址是这个,你可以在API文档里找到这些

    BASE_URL = 'httlus.com/v2'

    # 使用Requests上传图片

    url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(

    BASE_URL, API_KEY, API_SECRET)

    files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),

    mimetypes.guess_type(fileDir)[0]), }

    r = requests.post(url, files = files)

    # 如果读取到图片中的头像则输出他们,其中的'face_id'就是我们所需要的值

    faces = r.json().get('face')

    print faces

  • 创建Person

    这个操作没有什么可以讲的内容,可以对照这段程序和官方的API介绍。

    官方的API介绍可以见这里,相信看完这一段程序以后你就可以自己完成其余的API了。

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

  • # 上接上一段程序

    # 读取face_id

    if not faces is None: faceIdList = [face['face_id'] for face in faces]

    # 使用Requests创建Person

    url = '%s/person/create'%BASE_URL

    params = {

    'api_key': API_KEY,

    'api_secret': API_SECRET,

    'person_name': 'LittleCoder',

    'face_id': ','.join(faceIdList), }

    r = requests.get(url, params = params)

    # 获取person_id

    print r.json.()['person_id']

  • 进度确认

    到目前为止,你应该已经可以就给定的两张图片比对是否是同一个人了。

    那么让我们来试着写一下这个程序吧,两张图片分别为’pic1.jpg’, ‘pic2.jpg’好了。

    下面我给出了我的代码:

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

  • def upload_img(fileDir, oneface = True):

    url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(

    BASE_URL, API_KEY, API_SECRET)

    if oneface: url += '&mode=oneface'

    files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),

    mimetypes.guess_type(fileDir)[0]), }

    r = requests.post(url, files = files)

    faces = r.json().get('face')

    if faces is None:

    print('There is no face found in %s'%fileDir)

    else:

    return faces[0]['face_id']

    def compare(faceId1, faceId2):

    url = '%s/recognition/compare'%BASE_URL

    params = BASE_PARAMS

    params['face_id1'] = faceId1

    params['face_id2'] = faceId2

    r = requests.get(url, params)

    return r.json()

    faceId1 = upload_img('pic1.jpg')

    faceId2 = upload_img('pic2.jpg')

    if face_id1 and face_id2:

    print(compare(faceId1, faceId2))

    else:

    print('Please change two pictures')

  • 成品

    到此,所有的知识介绍都结束了,相比大致如何完成这个项目各位读者也已经有想法了吧。

    下面我们需要构思一下人脸解锁的思路,大致而言是这样的:

  • 使用一个程序设置账户(包括向账户中存储解锁用的图片)

  • 使用另一个程序登陆(根据输入的用户名测试解锁)

  • 这里会有很多重复的代码,就不再赘述了,你可以在这里或者这里(提取码:c073)下载源代码测试使用。

    这里是设置账户的截图:

    登陆

    结束语

    希望读完这篇文章能对你有帮助,有什么不足之处万望指正(鞠躬)。

⑷ 如何获取人脸 68个关键点 python代码

可以使用OpenCV,OpenCV的人脸检测功能在一般场合还是不错的。而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码。 写代码之前应该先安装python-opencv: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py #...

热点内容
新逍客20发动机压缩比 发布:2025-02-08 17:58:10 浏览:115
qq号和密码我都知道为什么登不上 发布:2025-02-08 17:52:21 浏览:872
宝塔服务器ip进不去 发布:2025-02-08 17:52:18 浏览:382
担保中介源码 发布:2025-02-08 17:14:37 浏览:412
手机存储卡速度测试 发布:2025-02-08 17:02:57 浏览:25
洪恩编程 发布:2025-02-08 17:02:19 浏览:814
linux远程控制 发布:2025-02-08 17:02:16 浏览:153
珠心算算法 发布:2025-02-08 17:00:37 浏览:919
动态ip可以做服务器么 发布:2025-02-08 17:00:33 浏览:220
oracle定义存储过程 发布:2025-02-08 16:54:35 浏览:151