python打印调用栈
❶ python堆和栈的区别有哪些
堆(Heap)与栈(Stack)是开发人员必须面对的两个概念,在理解这两个概念时,需要放到具体的场景下,因为不同场景下,堆与栈代表不同的含义。一般情况下,有两层含义:
(1)程序内存布局场景下,堆与栈表示的是两种内存管理方式;
(2)数据结构场景下,堆与栈表示两种常用的数据结构。
相关推荐:《Python教程》
堆与栈实际上是操作系统对进程占用的内存空间的两种管理方式,主要有如下几种区别:
(1)管理方式不同。栈由操作系统自动分配释放,无需我们手动控制;堆的申请和释放工作由程序员控制,容易产生内存泄漏;
(2)空间大小不同。每个进程拥有的栈的大小要远远小于堆的大小。理论上,程序员可申请的堆大小为虚拟内存的大小,进程栈的大小 64bits 的 Windows 默认 1MB,64bits 的 Linux 默认 10MB;
(3)生长方向不同。堆的生长方向向上,内存地址由低到高;栈的生长方向向下,内存地址由高到低。
(4)分配方式不同。堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是由操作系统完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由操作系统进行释放,无需我们手工实现。
(5)分配效率不同。栈由操作系统自动分配,会在硬件层级对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是由C/C++提供的库函数或运算符来完成申请与管理,实现机制较为复杂,频繁的内存申请容易产生内存碎片。显然,堆的效率比栈要低得多。
(6)存放内容不同。栈存放的内容,函数返回地址、相关参数、局部变量和寄存器内容等。当主函数调用另外一个函数的时候,要对当前函数执行断点进行保存,需要使用栈来实现,首先入栈的是主函数下一条语句的地址,即扩展指针寄存器的内容(EIP),然后是当前栈帧的底部地址,即扩展基址指针寄存器内容(EBP),再然后是被调函数的实参等,一般情况下是按照从右向左的顺序入栈,之后是被调函数的局部变量,注意静态变量是存放在数据段或者BSS段,是不入栈的。出栈的顺序正好相反,最终栈顶指向主函数下一条语句的地址,主程序又从该地址开始执行。堆,一般情况堆顶使用一个字节的空间来存放堆的大小,而堆中具体存放内容是由程序员来填充的。
从以上可以看到,堆和栈相比,由于大量malloc()/free()或new/delete的使用,容易造成大量的内存碎片,并且可能引发用户态和核心态的切换,效率较低。栈相比于堆,在程序中应用较为广泛,最常见的是函数的调用过程由栈来实现,函数返回地址、EBP、实参和局部变量都采用栈的方式存放。虽然栈有众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,主要还是用堆。
无论是堆还是栈,在内存使用时都要防止非法越界,越界导致的非法内存访问可能会摧毁程序的堆、栈数据,轻则导致程序运行处于不确定状态,获取不到预期结果,重则导致程序异常崩溃,这些都是我们编程时与内存打交道时应该注意的问题。
❷ python中有没有像java中的jstack命令
没有像jstack那么方便直接用的东西,一般来说有几个方案:
IDE: 用诸如 PyCharm, Eclpise with Pydev 的工具调试,觉得挂起的时候暂停并检查各个调用栈。
GDB: 优点是可以调试到native extension,缺点也很明显,需要在编译Python的时候加上Debug Symbols,默认这个是没有的。简单的说就是功能强大但是配得麻烦。
pdb:适合下断点...
pudb: 改下代码,在程序入口import pudb; pudb.set_interrupt_handler(),在运行的时候就可以Ctrl-C进入到交互式调试环境,易用性还好吧。
撸一个singal handler用于打印所有栈信息,参考 celery 实现的 install_cry_handler,或者看看 signalhandler,这个在 Python 3.3 自带了。
❸ python 捕获异常时 怎么调用栈信息
你可以用断点来看是哪里出的问题 一般都是这么做的吧 用F9添加断点到你想要调试的问题 然后用F10调试来查看信息
❹ 用Python 打印函数的定义和调用,求1到任意数字之间能被7整除但不能同时被5整
# -*- coding: utf-8 -*-
def print_num(max):
for i in range(max):
if i % 7 == 0 and i % 5 != 0:
print(i)
print_num(100)
❺ 我执行一段python脚本报错了,怎么解决
在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因。在操作系统提供的调用中,返回错误码非常常见。比如打开文件的函数open(),成功时返回文件描述符(就是一个整数),出错时返回-1。
用错误码来表示是否出错十分不便,因为函数本身应该返回的正常结果和错误码混在一起,造成调用者必须用大量的代码来判断是否出错:
复制代码代码如下:
def foo():
r = some_function()
if r==(-1):
return (-1)
# do something
return r
def bar():
r = foo()
if r==(-1):
print 'Error'
else:
pass
一旦出错,还要一级一级上报,直到某个函数可以处理该错误(比如,给用户输出一个错误信息)。
所以高级语言通常都内置了一套try...except...finally...的错误处理机制,Python也不例外。
try
让我们用一个例子来看看try的机制:
复制代码代码如下:
try:
print 'try...'
r = 10 / 0
print 'result:', r
except ZeroDivisionError, e:
print 'except:', e
finally:
print 'finally...'
print 'END'
当我们认为某些代码可能会出错时,就可以用try来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except语句块,执行完except后,如果有finally语句块,则执行finally语句块,至此,执行完毕。
上面的代码在计算10 / 0时会产生一个除法运算错误:
复制代码代码如下:
try...
except: integer division or molo by zero
finally...
END
从输出可以看到,当错误发生时,后续语句print 'result:', r不会被执行,except由于捕获到ZeroDivisionError,因此被执行。最后,finally语句被执行。然后,程序继续按照流程往下走。
如果把除数0改成2,则执行结果如下:
复制代码代码如下:
try...
result: 5
finally...
END
由于没有错误发生,所以except语句块不会被执行,但是finally如果有,则一定会被执行(可以没有finally语句)。
你还可以猜测,错误应该有很多种类,如果发生了不同类型的错误,应该由不同的except语句块处理。没错,可以有多个except来捕获不同类型的错误:
复制代码代码如下:
try:
print 'try...'
r = 10 / int('a')
print 'result:', r
except ValueError, e:
print 'ValueError:', e
except ZeroDivisionError, e:
print 'ZeroDivisionError:', e
finally:
print 'finally...'
print 'END'
int()函数可能会抛出ValueError,所以我们用一个except捕获ValueError,用另一个except捕获ZeroDivisionError。
此外,如果没有错误发生,可以在except语句块后面加一个else,当没有错误发生时,会自动执行else语句:
复制代码代码如下:
try:
print 'try...'
r = 10 / int('a')
print 'result:', r
except ValueError, e:
print 'ValueError:', e
except ZeroDivisionError, e:
print 'ZeroDivisionError:', e
else:
print 'no error!'
finally:
print 'finally...'
print 'END'
Python的错误其实也是class,所有的错误类型都继承自BaseException,所以在使用except时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。比如:
复制代码代码如下:
try:
foo()
except StandardError, e:
print 'StandardError'
except ValueError, e:
print 'ValueError'
第二个except永远也捕获不到ValueError,因为ValueError是StandardError的子类,如果有,也被第一个except给捕获了。
Python所有的错误都是从BaseException类派生的
使用try...except捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()调用foo(),foo()调用bar(),结果bar()出错了,这时,只要main()捕获到了,就可以处理:
复制代码代码如下:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar('0')
except StandardError, e:
print 'Error!'
finally:
print 'finally...'
也就是说,不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。这样一来,就大大减少了写try...except...finally的麻烦。
调用堆栈
如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py:
复制代码代码如下:
# err.py:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
bar('0')
main()
执行,结果如下:
复制代码代码如下:
$ python err.py
Traceback (most recent call last):
File "err.py", line 11, in <mole>
main()
File "err.py", line 9, in main
bar('0')
File "err.py", line 6, in bar
return foo(s) * 2
File "err.py", line 3, in foo
return 10 / int(s)
ZeroDivisionError: integer division or molo by zero
出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:
错误信息第1行:
复制代码代码如下:
Traceback (most recent call last):
告诉我们这是错误的跟踪信息。
第2行:
复制代码代码如下:
File "err.py", line 11, in <mole>
main()
调用main()出错了,在代码文件err.py的第11行代码,但原因是第9行:
复制代码代码如下:
File "err.py", line 9, in main
bar('0')
调用bar('0')出错了,在代码文件err.py的第9行代码,但原因是第6行:
复制代码代码如下:
File "err.py", line 6, in bar
return foo(s) * 2
原因是return foo(s) * 2这个语句出错了,但这还不是最终原因,继续往下看:
复制代码代码如下:
File "err.py", line 3, in foo
return 10 / int(s)
原因是return 10 / int(s)这个语句出错了,这是错误产生的源头,因为下面打印了:
复制代码代码如下:
ZeroDivisionError: integer division or molo by zero
根据错误类型ZeroDivisionError,我们判断,int(s)本身并没有出错,但是int(s)返回0,在计算10 / 0时出错,至此,找到错误源头。
记录错误
如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。
Python内置的logging模块可以非常容易地记录错误信息:
复制代码代码如下:
# err.py
import logging
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar('0')
except StandardError, e:
logging.exception(e)
main()
print 'END'
同样是出错,但程序打印完错误信息后会继续执行,并正常退出:
复制代码代码如下:
$ python err.py
ERROR:root:integer division or molo by zero
Traceback (most recent call last):
File "err.py", line 12, in main
bar('0')
File "err.py", line 8, in bar
return foo(s) * 2
File "err.py", line 5, in foo
return 10 / int(s)
ZeroDivisionError: integer division or molo by zero
END
通过配置,logging还可以把错误记录到日志文件里,方便事后排查。
抛出错误
因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。
如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后,用raise语句抛出一个错误的实例:
复制代码代码如下:
# err.py
class FooError(StandardError):
pass
def foo(s):
n = int(s)
if n==0:
raise FooError('invalid value: %s' % s)
return 10 / n
执行,可以最后跟踪到我们自己定义的错误:
复制代码代码如下:
$ python err.py
Traceback (most recent call last):
...
__main__.FooError: invalid value: 0
只有在必要的时候才定义我们自己的错误类型。如果可以选择Python已有的内置的错误类型(比如ValueError,TypeError),尽量使用Python内置的错误类型。
最后,我们来看另一种错误处理的方式:
复制代码代码如下:
# err.py
def foo(s):
n = int(s)
return 10 / n
def bar(s):
try:
return foo(s) * 2
except StandardError, e:
print 'Error!'
raise
def main():
bar('0')
main()
在bar()函数中,我们明明已经捕获了错误,但是,打印一个Error!后,又把错误通过raise语句抛出去了,这不有病么?
其实这种错误处理方式不但没病,而且相当常见。捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。
raise语句如果不带参数,就会把当前错误原样抛出。此外,在except中raise一个Error,还可以把一种类型的错误转化成另一种类型:
复制代码代码如下:
try:
10 / 0
except ZeroDivisionError:
raise ValueError('input error!')
只要是合理的转换逻辑就可以,但是,决不应该把一个IOError转换成毫不相干的ValueError。
小结
Python内置的try...except...finally用来处理错误十分方便。出错时,会分析错误信息并定位错误发生的代码位置才是最关键的。
程序也可以主动抛出错误,让调用者来处理相应的错误。但是,应该在文档中写清楚可能会抛出哪些错误,以及错误产生的原因。
❻ python 怎么打印异常
try:
#你认为会出异常的代码
exceptException,e:
#异常的堆栈信息
printe
#如果需要抛出异常
raisee
❼ python中怎么打印行号和文件名
importfileinput
importglob
importstring,sys
forlineinfileinput.input(glob.glob("samples/*.txt")):
iffileinput.isfirstline():#firstinafile?
sys.stderr.write("--reading%s-- "%fileinput.filename())
sys.stdout.write(str(fileinput.lineno())+""+string.upper(line))
用这个
❽ Python记录详细调用堆栈日志的方法
Python记录详细调用堆栈日志的方法
这篇文章主要介绍了Python记录详细调用堆栈日志的方法,涉及Python调用堆栈日志的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
import sys
import os
def detailtrace(info):
retStr = ""
curindex=0
f = sys._getframe()
f = f.f_back # first frame is detailtrace, ignore it
while hasattr(f, "f_code"):
co = f.f_code
retStr = "%s(%s:%s)->"%(os.path.basename(co.co_filename),
co.co_name,
f.f_lineno) + retStr
f = f.f_back
print retStr+info
def foo():
detailtrace("hello world")
def bar():
foo()
def main():
bar()
if __name__ == "__main__":
main()
输出:
aaa1.py(<mole>:27)->aaa1.py(main:24)->aaa1.py(bar:21)->aaa1.py(foo:18)->hello world
希望本文所述对大家的Python程序设计有所帮助。
❾ python log exception会打印堆栈么
不会,用import traceback
importtraceback
try:
a=3
b=a+{"1":3}
exceptExceptionase:
print'可以把一下信息写入日志'
#如log().info(traceback.print_exc(e))
traceback.print_exc(e)
❿ python实现堆栈与队列的方法
python实现堆栈与队列的方法
本文实例讲述了python实现堆栈与队列的方法。分享给大家供大家参考。具体分析如下:
1、python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了。
stack.py的程序:
代码如下:class Stack():
def __init__(self,size):
self.size=size;
self.stack=[];
self.top=-1;
def push(self,ele): #入栈之前检查栈是否已满
if self.isfull():
raise exception("out of range");
else:
self.stack.append(ele);
self.top=self.top+1;
def pop(self): # 出栈之前检查栈是否为空
if self.isempty():
raise exception("stack is empty");
else:
self.top=self.top-1;
return self.stack.pop();
def isfull(self):
return self.top+1==self.size;
def isempty(self):
return self.top==-1;
再写一个程序文件,stacktest.py,使用栈,内容如下:
代码如下:#!/usr/bin/python
from stack import Stack
s=Stack(20);
for i in range(3):
s.push(i);
s.pop()
print s.isempty();
2、python 实现队列:
复制代码代码如下:class Queue():
def __init__(self,size):
self.size=size;
self.front=-1;
self.rear=-1;
self.queue=[];
def enqueue(self,ele): #入队操作
if self.isfull():
raise exception("queue is full");
else:
self.queue.append(ele);
self.rear=self.rear+1;
def dequeue(self): #出队操作
if self.isempty():
raise exception("queue is empty");
else:
self.front=self.front+1;
return self.queue[self.front];
def isfull(self):
return self.rear-self.front+1==self.size;
def isempty(self):
return self.front==self.rear;
q=Queue(10);
for i in range(3):
q.enqueue(i);
print q.dequeue();
print q.isempty();
希望本文所述对大家的Python程序设计有所帮助。