当前位置:首页 » 编程语言 » opencvforpython27

opencvforpython27

发布时间: 2022-05-28 16:58:54

⑴ 如何在OSX系统上安装Opencv3和python2.7

setp1

安装CodeX,不解释,在AppStop中搜索安装即可

setp2

安装Homebrew

Homebrew即MacOSX上的apt-get

按照官网的安装方式,在terminal中输入下列命令即可完成安装

cd ~
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

setp3

使用Homebrew安装Python,注意:避免使用系统Python解释器作为我们自己的主解析器,尤其是在使用virtualenv和virtualenvwrapper的时候。安装命令:

$ brew install python

注意安装结束后会有下列提示,提示我们把/usr/local/opt/python/libexec/bin增加到环境变量中,此举正是为了我们在使用python时,使用的是用Homebrew安装的python而不是系统python。

If you wish to have this formula's python executable in your PATH then add

the following to ~/.bash_profile:

export PATH="/usr/local/opt/python/libexec/bin:$PATH"

这是重要的一步,请不要跳过。

setp4

安装 virtualenv 和 virtualenvwrapper

这两个工具是为了创建独立的python环境,不了解的朋友请自行Google

值得注意的是,这两个工具对于搭建opencv3.0+python2.7运行环境来说不是必须的,但是强烈建议安装,以保证python环境的干净,易于管理。

安装只需执行命令:

$ pip install virtualenv virtualenvwrapper

安装完成后,在~/.bash_profile文件中追加如下内容:

# Virtualenv/VirtualenvWrapper
source /usr/local/bin/virtualenvwrapper.sh

然后执行命令:

$ source ~/.bash_profile

至此,virtualenv 和virtualenvwrapper已经正确完成安装。我们可以使用如下命令创建一个独立的python环境:

$ mkvirtualenv cv

setp5

我们开始安装一些必须的python包,安装NumPy

We need to install NumPy since the OpenCV Python bindings represent images as multi-dimensional NumPy arrays

安装方式:

$ pip install numpy

注意:如果你使用了step4中的virtualenv创建python虚拟环境,则需要在您之前创建的虚拟环境中安装需要的python包

step6

之前的步骤,主要目的是建立和配置编译安装OpenCv的环境,从这一步开始,我们开始真正的工作。

首先,我们使用brew安装需要的开发者工具,例如CMake。

$ brew install cmake pkg-config

还有一些必要的图像I/O包,这些包可以使我们能够加载各种不同类型的图像文件例如JPEG,PNG,TIFF等。

$ brew install jpeg libpng libtiff openexr

And finally, let’s install libraries that are used to optimize various operations within OpenCV (if we so choose):

$ brew install eigen tbb

setp7

恭喜,截止目前系统已经搭建完成,我们开始着手编译和安装python支持的opencv。下载代码:

$ cd ~
$ git clone https://github.com/Itseez/opencv.git
$ cd opencv
$ git checkout 3.0.0

最后一个命令$ git checkout 3.0.0其中的3.0.0可以替换成你需要的版本号

之后下载opencv_contrib代码,这部分不是必须的,但是强烈建议同时下载,原因是opencv_contrib包含很多有用的功能,包括:

feature detection, local invariant descriptors (SIFT, SURF, etc.), text detection in natural images, line descriptors, and more

$ cd ~
$ git clone https://github.com/Itseez/opencv_contrib
$ cd opencv_contrib
$ git checkout 3.0.0

请确保checkout opencv_contrib的版本号要与上面checkout opencv的版本号相同

step8

创建一个bulid目录:

$ cd ~/opencv
$ mkdir build
$ cd build

使用CMake配置我们的构建:

$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local \
-D PYTHON2_PACKAGES_PATH=~/.virtualenvs/cv/lib/python2.7/site-packages \
-D PYTHON2_LIBRARY=/usr/local/Cellar/python/2.7.13_1/Frameworks/Python.framework/Versions/2.7/bin \
-D PYTHON2_INCLUDE_DIR=/usr/local/Frameworks/Python.framework/Headers \
-D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON \
-D BUILD_EXAMPLES=ON \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/moles ..

注意:在执行上述命令之前,请务必切换到之前建立的虚拟python环境cv:

workon cv

cmake命令执行完成后,需要关注它的总结输出,尤其是其中的Opencv moles部分:

-- OpenCV moles:
-- To be built: core flann imgproc ml objdetect photo video dnn imgcodecs shape videoio highgui superres ts features2d calib3d stitching videostab python2
-- Disabled: world
-- Disabled by dependency: -
-- Unavailable: cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cubjdetect cuptflow cudastereo cudawarping cudev java python3 viz

-- Python 2:
-- Interpreter: /Users/zhuangyuan/.virtualenvs/cv/bin/python2.7 (ver 2.7.13)
-- Libraries: /usr/local/Cellar/python/2.7.13_1/Frameworks/Python.framework/Versions/2.7/bin (ver 2.7.13)
-- numpy: /Users/zhuangyuan/.virtualenvs/cv/lib/python2.7/site-packages/numpy/core/include (ver 1.13.1)
-- packages path: /Users/zhuangyuan/.virtualenvs/cv/lib/python2.7/site-packages

如果python2部分的信息不完整,或者python2没有出现在OpenCV moles的To be built:后面,而是出现在Unvailable:后面,则说明Cmake没有正确完成,需要检查此步骤中Cmake命令的参数中的路径是否正确已经是否确实切换到了我们为opencv建立的虚拟python环境中。

再次提醒,此步骤中参数路径必须仔细核对,如果错误,后续的编译将无法成功

这时候可以开始编译了:

$ make -j4

这里的4是利用4核CPU全速并行编译,也可以不带-j4参数,或者把4修改成你的CPU核心数

编译完成后,进行安装:

make install

如果有错误,加上sudo再执行:

sudo make install

setp9

检查一下~/.virtualenvs/cv/lib/python2.7/site-packages/路径下可以看到cv2.so就说明安装成功了:

$ cd ~/.virtualenvs/cv/lib/python2.7/site-packages/
$ ls -l cv2.so
-rwxr-xr-x 1 adrian staff 2013052 Jun 5 15:20 cv2.so

用一下吧:

(cv) promote:lib zhuangyuan$ python
Python 2.7.13 (default, Jul 18 2017, 09:17:00)
[GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
Type "help", "right", "credits" or "license" for more information.
>>> import cv2
>>> cv2.__version__
'3.3.0'

恭喜,OSX系统下opencv3 with python2.7环境搭建成功。

⑵ 如何在python安装opencv

1.下载Python,当前OPencv版本为249,不过其支持的最新版本的Python为2.7,所以可以下载276版本。

2.下载numpy,开始我使用了1.6,没有通过,错误如图。下载了最新的1.8.1版本。

3.将Opencv安装目录下opencv\build\python\2.7\x86中的cv2.pyd复制到python安装目录Lib\site-packages下。

4.找到opencv源文件内的draw.py运行。

⑶ python 2.7怎么安装opencv包

在cmd里输入Python,若出现“不是内部命令”,将python的安装目录添加到PATH,例如”C:Python27”。

出现下图说明OK了。

⑷ VS2013编译Opencv源代码时出现错误 160 error LNK1104: 无法打开文件"python27_d

使用vs2013右键点击解决方案属性,找到里面的链接器->输入项,看一下项目的附加依赖项是不是仍然配置的是opencv_world320d.lib,把它改成3.0版本的lib库就行了

⑸ 如何使用Python,基于OpenCV与Face++实现人脸解锁的功能

近几天微软的发布会上讲到了不少认脸解锁的内容,经过探索,其实利用手头的资源我们完全自己也可以完成这样一个过程。

本文讲解了如何使用Python,基于OpenCV与Face++实现人脸解锁的功能。

本文基于Python 2.7.11,Windows 8.1 系统。

主要内容

  • Windows 8.1上配置OpenCV

  • OpenCV的人脸检测应用

  • 使用Face++完成人脸辨识(如果你想自己实现这部分的功能,可以借鉴例如这个项目)

  • Windows 8.1上配置OpenCV

    入门的时候配置环境总是一个非常麻烦的事情,在Windows上配置OpenCV更是如此。

    既然写了这个推广的科普教程,总不能让读者卡在环境配置上吧。

    下面用到的文件都可以在这里(提取码:b6ec)下载,但是注意,目前OpenCV仅支持Python2.7。

    将cv2加入site-packages

    将下载下来的cv2.pyd文件放入Python安装的文件夹下的Libsite-packages目录。

    就我的电脑而言,这个目录就是C:/Python27/Lib/site-packages/。

    记得不要直接使用pip安装,将文件拖过去即可。

    安装numpy组件

    在命令行下进入到下载下来的文件所在的目录(按住Shift右键有在该目录打开命令行的选项)

    键入命令:

    1

  • pip install numpy-1.11.0rc2-cp27-cp27m-win32.whl

  • 如果你的系统或者Python不适配,可以在这里下载别的轮子。

    测试OpenCV安装

    在命令行键入命令:

    1

  • python -c "import cv2"

  • 如果没有出现错误提示,那么cv2就已经安装好了。

    OpenCV的人脸检测应用

    人脸检测应用,简而言之就是一个在照片里找到人脸,然后用方框框起来的过程(我们的相机经常做这件事情)

    那么具体而言就是这样一个过程:

  • 获取摄像头的图片

  • 在图片中检测到人脸的区域

  • 在人脸的区域周围绘制方框

  • 获取摄像头的图片

    这里简单的讲解一下OpenCV的基本操作。

    以下操作是打开摄像头的基本操作:

    1

    2

    3

    4

    5

    6

    7

  • #coding=utf8

    import cv2

    # 一般笔记本的默认摄像头都是0

    capInput = cv2.VideoCapture(0)

    # 我们可以用这条命令检测摄像头是否可以读取数据

    if not capInput.isOpened(): print('Capture failed because of camera')

  • 那么怎么从摄像头读取数据呢?

    1

    2

    3

    4

    5

    6

    7

    8

  • # 接上段程序

    # 现在摄像头已经打开了,我们可以使用这条命令读取图像

    # img就是我们读取到的图像,就和我们使用open('pic.jpg', 'rb').read()读取到的数据是一样的

    ret, img = capInput.read()

    # 你可以使用open的方式存储,也可以使用cv2提供的方式存储

    cv2.imwrite('pic.jpg', img)

    # 同样,你可以使用open的方式读取,也可以使用cv2提供的方式读取

    img = cv2.imread('pic.jpg')

  • 为了方便显示图片,cv2也提供了显示图片的方法:

    1

    2

    3

    4

    5

    6

  • # 接上段程序

    # 定义一个窗口,当然也可以不定义

    imgWindowName = 'ImageCaptured'

    imgWindow = cv2.namedWindow(imgWindowName, cv2.WINDOW_NORMAL)

    # 在窗口中显示图片

    cv2.imshow(imgWindowName, img)

  • 当然在完成所有操作以后需要把摄像头和窗口都做一个释放:

    1

    2

    3

    4

    5

  • # 接上段程序

    # 释放摄像头

    capInput.release()

    # 释放所有窗口

    cv2.destroyAllWindows()

  • 在图片中检测到人脸的区域

    OpenCV给我们提供了已经训练好的人脸的xml模板,我们只需要载入然后比对即可。

    1

    2

    3

    4

    5

    6

    7

    8

  • # 接上段程序

    # 载入xml模板

    faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

    # 将图形存储的方式进行转换

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 使用模板匹配图形

    faces = faceCascade.detectMultiScale(gray, 1.3, 5)

    print(faces)

  • 在人脸的区域周围绘制方框

    在上一个步骤中,faces中的四个量分别为左上角的横坐标、纵坐标、宽度、长度。

    所以我们根据这四个量很容易的就可以绘制出方框。

    1

    2

    3

  • # 接上段程序

    # 函数的参数分别为:图像,左上角坐标,右下角坐标,颜色,宽度

    img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

  • 成果

    根据上面讲述的内容,我们现在已经可以完成一个简单的人脸辨认了:

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

  • #coding=utf8

    import cv2

    print('Press Esc to exit')

    faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

    imgWindow = cv2.namedWindow('FaceDetect', cv2.WINDOW_NORMAL)

    def detect_face():

    capInput = cv2.VideoCapture(0)

    # 避免处理时间过长造成画面卡顿

    nextCaptureTime = time.time()

    faces = []

    if not capInput.isOpened(): print('Capture failed because of camera')

    while 1:

    ret, img = capInput.read()

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    if nextCaptureTime < time.time():

    nextCaptureTime = time.time() + 0.1

    faces = faceCascade.detectMultiScale(gray, 1.3, 5)

    if faces:

    for x, y, w, h in faces:

    img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

    cv2.imshow('FaceDetect', img)

    # 这是简单的读取键盘输入,27即Esc的acsii码

    if cv2.waitKey(1) & 0xFF == 27: break

    capInput.release()

    cv2.destroyAllWindows()

    if __name__ == '__main__':

    detect_face()

  • 使用Face++完成人脸辨识

    第一次认识Face++还是因为支付宝的人脸支付,响应速度还是非常让人满意的。

    现在只需要免费注册一个账号然后新建一个应用就可以使用了,非常方便。

    他的官方网址是这个,注册好之后在这里的我的应用中创建应用即可。

    创建好应用之后你会获得API Key与API Secret。

    Face++的API调用逻辑简单来说是这样的:

  • 上传图片获取读取到的人的face_id

  • 创建Person,获取person_id(Person中的图片可以增加、删除)

  • 比较两个face_id,判断是否是一个人

  • 比较face_id与person_id,判断是否是一个人

  • 上传图片获取face_id

    在将图片通过post方法上传到特定的地址后将返回一个json的值。

    如果api_key, api_secret没有问题,且在上传的图片中有识别到人脸,那么会存储在json的face键值下。

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

  • #coding=utf8

    import requests

    # 这里填写你的应用的API Key与API Secret

    API_KEY = ''

    API_SECRET = ''

    # 目前的API网址是这个,你可以在API文档里找到这些

    BASE_URL = 'httlus.com/v2'

    # 使用Requests上传图片

    url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(

    BASE_URL, API_KEY, API_SECRET)

    files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),

    mimetypes.guess_type(fileDir)[0]), }

    r = requests.post(url, files = files)

    # 如果读取到图片中的头像则输出他们,其中的'face_id'就是我们所需要的值

    faces = r.json().get('face')

    print faces

  • 创建Person

    这个操作没有什么可以讲的内容,可以对照这段程序和官方的API介绍。

    官方的API介绍可以见这里,相信看完这一段程序以后你就可以自己完成其余的API了。

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

  • # 上接上一段程序

    # 读取face_id

    if not faces is None: faceIdList = [face['face_id'] for face in faces]

    # 使用Requests创建Person

    url = '%s/person/create'%BASE_URL

    params = {

    'api_key': API_KEY,

    'api_secret': API_SECRET,

    'person_name': 'LittleCoder',

    'face_id': ','.join(faceIdList), }

    r = requests.get(url, params = params)

    # 获取person_id

    print r.json.()['person_id']

  • 进度确认

    到目前为止,你应该已经可以就给定的两张图片比对是否是同一个人了。

    那么让我们来试着写一下这个程序吧,两张图片分别为’pic1.jpg’, ‘pic2.jpg’好了。

    下面我给出了我的代码:

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

  • def upload_img(fileDir, oneface = True):

    url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(

    BASE_URL, API_KEY, API_SECRET)

    if oneface: url += '&mode=oneface'

    files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),

    mimetypes.guess_type(fileDir)[0]), }

    r = requests.post(url, files = files)

    faces = r.json().get('face')

    if faces is None:

    print('There is no face found in %s'%fileDir)

    else:

    return faces[0]['face_id']

    def compare(faceId1, faceId2):

    url = '%s/recognition/compare'%BASE_URL

    params = BASE_PARAMS

    params['face_id1'] = faceId1

    params['face_id2'] = faceId2

    r = requests.get(url, params)

    return r.json()

    faceId1 = upload_img('pic1.jpg')

    faceId2 = upload_img('pic2.jpg')

    if face_id1 and face_id2:

    print(compare(faceId1, faceId2))

    else:

    print('Please change two pictures')

  • 成品

    到此,所有的知识介绍都结束了,相比大致如何完成这个项目各位读者也已经有想法了吧。

    下面我们需要构思一下人脸解锁的思路,大致而言是这样的:

  • 使用一个程序设置账户(包括向账户中存储解锁用的图片)

  • 使用另一个程序登陆(根据输入的用户名测试解锁)

  • 这里会有很多重复的代码,就不再赘述了,你可以在这里或者这里(提取码:c073)下载源代码测试使用。

    这里是设置账户的截图:

    登陆

    结束语

    希望读完这篇文章能对你有帮助,有什么不足之处万望指正(鞠躬)。

⑹ opencv 的python 问题

importcv2
importglob

PATH1=""
PATH2=""
forfinglob.glob(PATH1+".*jpg")
index=f.rfind("/")
filename=f[index:]
img=cv2.imread(f)
img=cv2.resize(img,(32,32),interpolation=cv2.INTER_CUBIC)
cv2.imwrite(PATH2+filename,img)

⑺ python2.7与opencv哪个版本兼容

下载的opencv2.4,在opencv文件夹中,build->python->2.7里只有cv2.pyd文件,并且复制于C:\Python27\Lib\site-packages 中是不可用的
新版的opencv(2.3/2.4)都是有python模块的,可以兼容python 2.7

⑻ 如何在Python中使用OpenCV的

0.下载安装Opencv,当前版本为249.


1.下载Python,当前OPencv版本为249,不过其支持的最新版本的Python为2.7,所以可以下载276版本。


2.下载numpy,开始我使用了1.6,没有通过,错误如图。下载了最新的1.8.1版本。

3.将Opencv安装目录下opencvuildpython2.7x86中的cv2.pyd复制到python安装目录Libsite-packages下。


4.找到opencv源文件内的draw.py运行。

~如果你认可我的回答,请及时点击【采纳为满意回答】按钮

~~手机提问的朋友在客户端右上角评价点【满意】即可。

~你的采纳是我前进的动力

~~O(∩_∩)O,记得好评和采纳,互相帮助,谢谢。

⑼ 怎么在python中使用cv2.cvtcolor

注意,现在OpenCV for Python就是通过NumPy进行绑定的。所以在使用时必须掌握一些NumPy的相关知识!

图像就是一个矩阵,在OpenCV for Python中,图像就是NumPy中的数组!

如果读取图像首先要导入OpenCV包,方法为:

importcv2
emptyImage3=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#emptyImage3[...]=0
热点内容
bilibi手机缓存目录在 发布:2025-02-12 08:33:11 浏览:457
听ti密码是多少 发布:2025-02-12 08:22:15 浏览:288
淘宝上传视频凭证 发布:2025-02-12 08:06:46 浏览:878
java画 发布:2025-02-12 08:01:00 浏览:549
光遇安卓官服是在哪里下载 发布:2025-02-12 07:47:47 浏览:648
安卓手机如何关闭程序打开广告 发布:2025-02-12 07:31:06 浏览:469
新版影视大全不能缓存 发布:2025-02-12 07:31:04 浏览:976
sql两个字段in 发布:2025-02-12 07:29:45 浏览:771
漂亮网站源码 发布:2025-02-12 07:26:40 浏览:760
执行脚本前 发布:2025-02-12 07:14:49 浏览:472