当前位置:首页 » 文件管理 » 压缩编码方法

压缩编码方法

发布时间: 2022-05-27 00:41:26

Ⅰ 多媒体数据压缩编码方法可分为哪两大类

无损压缩编码
有损压缩编码
通常解码的运算复杂度低于编码.通过比较解码前后数据的是否一致,把数据编码方法分为无损编码和有损编码2类(即无损压缩和有损压缩)前者是解码前后数据完全一致,没有任何失真和偏差.后者有一定程度偏差和失真,但是没多大影响.常见的压缩算法有信息熵编码(主要有行程长度编码,哈夫曼编码和算术编码),通用编码,预测编码,模型法编码等等.无损压缩的算法一般比较复杂,而且一般的算法多为有损算法.考虑文件和图象的重要型,有时可采用无损压缩,但要注意此种压缩压缩比不会很高.

Ⅱ 有谁知道,JPEG压缩编码算法的主要步骤

JPEG压缩编码算法的主要计算步骤如下:

1.正向离散余弦变换(FDCT)。

2.量化(quantization)。

3.Z字形编码(zigzag scan)。

4.使用差分脉冲编码调制(differential pulse code molation,DPCM)对直流系数(DC)进行编码。

5.使用行程长度编码(run-length encoding,RLE)对交流系数(AC)进行编码。

6.熵编码(entropy coding)。

2. 量化

量化是对经过FDCT变换后的频率系数进行量化。量化的目的是减小非“0”系数的幅度以及增加“0”值系数的数目。量化是图像质量下降的最主要原因。

对于有损压缩算法,JPEG算法使用均匀量化器进行量化,量化步距是按照系数所在的位置和每种颜色分量的色调值来确定。因为人眼对亮度信号比对色差信号更敏感,因此使用了两种量化表:亮度量化值和色差量化值。此外,由于人眼对低频分量的图像比对高频分量的图像更敏感,因此图中的左上角的量化步距要比右下角的量化步距小。

3. Z字形编排

量化后的系数要重新编排,目的是为了增加连续的“0”系数的个数,就是“0”的游程长度,方法是按照Z字形的式样编排,如图5-17所示。这样就把一个8 ? 8的矩阵变成一个1 ? 64的矢量,频率较低的系数放在矢量的顶部。

4. 直流系数的编码

8 ? 8图像块经过DCT变换之后得到的DC直流系数有两个特点,一是系数的数值比较大,二是相邻8 ? 8图像块的DC系数值变化不大。根据这个特点,JPEG算法使用了差分脉冲调制编码(DPCM)技术,对相邻图像块之间量化DC系数的差值(Delta)进行编码,

Delta=DC(0, 0)k-DC(0, 0)k-1 ........ (5-5)

5. 交流系数的编码

量化AC系数的特点是1 ? 64矢量中包含有许多“0”系数,并且许多“0”是连续的,因此使用非常简单和直观的游程长度编码(RLE)对它们进行编码。

JPEG使用了1个字节的高4位来表示连续“0”的个数,而使用它的低4位来表示编码下一个非“0”系数所需要的位数,跟在它后面的是量化AC系数的数值。

6. 熵编码

使用熵编码还可以对DPCM编码后的直流DC系数和RLE编码后的交流AC系数作进一步的压缩。

在JPEG有损压缩算法中,使用霍夫曼编码器来减少熵。使用霍夫曼编码器的理由是可以使用很简单的查表(lookup table)方法进行编码。压缩数据符号时,霍夫曼编码器对出现频度比较高的符号分配比较短的代码,而对出现频度较低的符号分配比较长的代码。这种可变长度的霍夫曼码表可以事先进行定义。

Ⅲ 简述栅格数据压缩编码的几种方式和各自的优缺点

1种方式:矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体。

优点:当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。

缺点:在栅格文件中,每个栅格只能赋予一个唯一的属性值,所以属性个数的总数是栅格文件的行数乘以列数的积,而为了保证精度,栅格单元分得一般都很小,这样需要存储的数据量就相当大了。

栅(shān)格数据

就是将空间分割成有规律的网格,每一个网格称为一个单元,并在各单元上赋予相应的属性值来表示实体的一种数据形式。

每一个单元(像素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针。一个优秀的压缩数据编码方案是:在最大限度减少计算机运算时间的基点上进行最大幅度的压缩。

Ⅳ 二进制压缩算法有哪些

二进制数据压缩算法二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’。‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号“0‘’。‘’1‘’的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。

二进制压缩 - 算法

二进制压缩

编程时遇到每个数据只有两种状态,且 dfs 或者 bfs 时遍历时间复杂度高时,可以采用二进制压缩数据,尤其是二维数组。LZFSE

1,zlib和gzip都对deflate进行了封装,比deflate多了数据头和尾

1,苹果开源了新的无损压缩算法 LZFSE ,该算法是去年在iOS 9和OS X 10.10中 引入 的。按照苹果公司的说法,LZFE的压缩增益和ZLib level 5相同,但速度要快2~3倍,能源效率也更高。

LZFSE基于Lempel-Ziv,并使用了 有限状态熵编码,后者基于Jarek Duda在

非对称数字系统(ANS)方面所做的熵编码工作。简单地讲,ANS旨在“终结速度和比率的平衡”,既可以用于精确编码,又可以用于快速编码,并且具有数据加密功能。使用ANS代替更为传统的

Huffman和 算术编码方法的压缩库 越来越多,LZFSE就位列其中。

显然,LZFSE的目标不是成为最好或最快的算法。事实上,苹果公司指出,

LZ4的压缩速度比LZFSE快,而 LZMA提供了更高的压缩率,但代价是比Apple

SDK提供的其他选项要慢一个数量级。当压缩率和速度几乎同等重要,而你又希望降低能源效率时,LZFSE是苹果推荐的选项。

GitHub上提供了LZFSE的参考实现。在MacOS上构建和运行一样简单:

$ xcodebuild install DSTROOT=/tmp/lzfse.dst

如果希望针对当前的iOS设备构建LZFSE,可以执行:

xcodebuild -configuration “Release” -arch armv7 install DSTROOT=/tmp/lzfse.dst

除了 API文档之外,苹果去年还提供了一个 示例项目,展示如何使用LZFSE 进行块和流压缩,这是一个实用的LZFSE入门资源。

LZFSE是在谷歌 brotli之后发布的,后者在去年开源。与LZFSE相比,brotli 似乎是针对一个不同的应用场景进行了优化,比如压缩静态Web资产和Android APK,在这些情况下,压缩率是最重要的。

Ⅳ 数据无损压缩算法

所谓无损压缩格式,顾名思义,就是毫无损失地将声音信号进行压缩的音频格式。常见的像MP3、WMA等格式都是有损压缩格式,相比于作为源的WAV文件,它们都有相当大程度的信号丢失,这也是它们能达到10%的压缩率的根本原因。而无损压缩格式,就好比用Zip或RAR这样的压缩软件去压缩音频信号,得到的压缩格式还原成WAV文件,和作为源的WAV文件是一模一样的!但是如果用Zip或RAR来压缩WAV文件的话,必须将压缩包解压后才能播放。而无损压缩格式则能直接通过播放软件实现实时播放,使用起来和MP3等有损格式一模一样。总而言之,无损压缩格式就是能在不牺牲任何音频信号的前提下,减少WAV文件体积的格式。

经常使用的无损压缩算法有 Shannon-Fano 编码,Huffman 编码,行程(Run-length)编码,LZW(Lempel-Ziv-Welch)编码和算术编码等。

Huffman 编码
该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码。它是统计独立信源能达到最小平均码长的编码方法。编码效率高 。

基本原理:

依据信源字符出现的概率大小来构造代码,对出现概率较大的信源字符,给予较短码长,而对于出现概率较小的信源字符,给予较长的码长,最后使得编码的平均码字最短。

编码步骤:

(1)初始化,根据符号概率的大小按由大到小顺序对符号进行排序。

(2)把概率最小的两个符号组成一个节点。

(3)重复步骤2。

(4)从根节点开始到相应于每个符号的“树叶”,从上到下标上“0”(上枝)或者“1”(下枝)至于哪个为“1”哪个为“0”则无关紧要,最后的结果仅仅是分配的代码不同,而代码的平均长度是相同的。

(5)从根节点开始顺着树枝到每个叶子分别写出每个符号的代码。

无损压缩算法有哪些

Huffman编码的注意点:

Huffman编码没有错误保护功能,如果码中有错误,则可能引起接下来的一连串译码错误。

Huffman编码是可变长编码,因此很难随意查找或调用中的文件内容。

Huffman依赖于信源的统计特性。 Huffman编码的每个码字都是整数:因此实际上平均码长很难达到信息熵的大小。

Huffman编码解码必须要有码表,如果消息数目很多,那么

Ⅵ 压缩算法原理

哈夫曼
哈夫曼编码是无损压缩当中最好的方法。它使用预先二进制描述来替换每个符号,长度由特殊符号出现的频率决定。常见的符号需要很少的位来表示,而不常见的符号需要很多为来表示。

哈夫曼算法在改变任何符号二进制编码引起少量密集表现方面是最佳的。然而,它并不处理符号的顺序和重复或序号的序列。

2.1 原理
我不打算探究哈夫曼编码的所有实际的细节,但基本的原理是为每个符号找到新的二进制表示,从而通常符号使用很少的位,不常见的符号使用较多的位。

简短的说,这个问题的解决方案是为了查找每个符号的通用程度,我们建立一个未压缩数据的柱状图;通过递归拆分这个柱状图为两部分来创建一个二叉树,每个递归的一半应该和另一半具有同样的权(权是 ∑ N K =1 符号数 k , N 是分之中符号的数量,符号数 k 是符号 k出现的次数 )

这棵树有两个目的:

1. 编码器使用这棵树来找到每个符号最优的表示方法

2. 解码器使用这棵树唯一的标识在压缩流中每个编码的开始和结束,其通过在读压缩数据位的时候自顶向底的遍历树,选择基于数据流中的每个独立位的分支,一旦一个到达叶子节点,解码器知道一个完整的编码已经读出来了。

压缩后的数据流是 24 位(三个字节),原来是 80 位( 10 个字节)。当然,我应该存储哈夫曼树,这样解码器就能够解码出对应的压缩流了,这就使得该例子中的真正数据流比输入的流数据量大。这是相对较短的数据上的副作用。对于大数据量来说,上面的哈夫曼树就不占太多比例了。

解码的时候,从上到下遍历树,为压缩的流选择从左 / 右分支,每次碰到一个叶子节点的时候,就可以将对应的字节写到解压输出流中,然后再从根开始遍历。

2.2 实现
哈夫曼编码器可以在基本压缩库中找到,其是非常直接的实现。

这个实现的基本缺陷是:

1. 慢位流实现

2. 相当慢的解码(比编码慢)

3. 最大的树深度是 32 (编码器在任何超过 32 位大小的时候退出)。如果我不是搞错的话,这是不可能的,除非输出的数据大于 2 32字节。

另一方面,这个实现有几个优点:

1. 哈夫曼树以一个紧密的形式每个符号要求 12 位(对于 8 位的符号)的方式存储,这意味着最大的头为 384 。

2. 编码相当容易理解

哈夫曼编码在数据有噪音的情况(不是有规律的,例如 RLE )下非常好,这中情况下大多数基于字典方式的编码器都有问题。

Ⅶ 应用感知编码的主要压缩编码的方法有哪些

在介绍图象的压缩编码之前,先考虑一个问题:为什么要压缩?其实这个问题不用我回答,你也能想得到。因为图象信息的数据量实在是太惊人了。举一个例子就明白:一张A4(210mm×297mm)幅面的照片,若用中等分辨率(300dpi)的扫描仪按真彩色扫描,其数据量为多少?让我们来计算一下:共有(300×210/25.4)×(300×297/25.4)个象素,每个象素占3个字节,其数据量为26M字节,其数据量之大可见一斑了。如今在Internet上,传统基于字符界面的应用逐渐被能够浏览图象信息的WWW(WorldWideWeb)方式所取代。WWW尽管漂亮,但是也带来了一个问题:图象信息的数据量太大了,本来就已经非常紧张的网络带宽变得更加不堪重负,使得WorldWideWeb变成了WorldWideWait。总之,大数据量的图象信息会给存储器的存储容量,通信干线信道的带宽,以及计算机的处理速度增加极大的压力。单纯靠增加存储器容量,提高信道带宽以及计算机的处理速度等方法来解决这个问题是不现实的,这时就要考虑压缩。压缩的理论基础是信息论。从信息论的角度来看,压缩就是去掉信息中的冗余,即保留不确定的信息,去掉确定的信息(可推知的),也就是用一种更接近信息本质的描述来代替原有冗余的描述。这个本质的东西就是信息量(即不确定因素)。压缩可分为两大类:第一类压缩过程是可逆的,也就是说,从压缩后的图象能够完全恢复出原来的图象,信息没有任何丢失,称为无损压缩;第二类压缩过程是不可逆的,无法完全恢复出原图象,信息有一定的丢失,称为有损压缩。选择哪一类压缩,要折衷考虑,尽管我们希望能够无损压缩,但是通常有损压缩的压缩比(即原图象占的字节数与压缩后图象占的字节数之比,压缩比越大,说明压缩效率越高)比无损压缩的高。图象压缩一般通过改变图象的表示方式来达到,因此压缩和编码是分不开的。图象压缩的主要应用是图象信息的传输和存储,可广泛地应用于广播电视、电视会议、计算机通讯、传真、多媒体系统、医学图象、卫星图象等领域。压缩编码的方法有很多,主要分成以下四大类:(1)象素编码;(2)预测编码;(3)变换编码;(4)其它方法。所谓象素编码是指,编码时对每个象素单独处理,不考虑象素之间的相关性。在象素编码中常用的几种方法有:(1)脉冲编码调制(PulseCodeMolation,简称PCM);(2)熵编码(EntropyCoding);(3)行程编码(RunLengthCoding);(4)位平面编码(BitPlaneCoding)。其中我们要介绍的是熵编码中的哈夫曼(Huffman)编码和行程编码(以读取.PCX文件为例)。所谓预测编码是指,去除相邻象素之间的相关性和冗余性,只对新的信息进行编码。举个简单的例子,因为象素的灰度是连续的,所以在一片区域中,相邻象素之间灰度值的差别可能很小。如果我们只记录第一个象素的灰度,其它象素的灰度都用它与前一个象素灰度之差来表示,就能起到压缩的目的。如248,2,1,0,1,3,实际上这6个象素的灰度是248,250,251,251,252,255。表示250需要8个比特,而表示2只需要两个比特,这样就实现了压缩。常用的预测编码有Δ调制(DeltaMolation,简称DM);微分预测编码(DifferentialPulseCodeMolation,DPCM),具体的细节在此就不详述了。所谓变换编码是指,将给定的图象变换到另一个数据域(如频域)上,使得大量的信息能用较少的数据来表示,从而达到压缩的目的。变换编码有很多,如(1)离散傅立叶变换(DiscreteFourierTransform,简称DFT);(2)离散余弦变换(DiscreteCosineTransform,简称DCT);(3)离散哈达玛变换(DiscreteHadamardTransform,简称DHT)。其它的编码方法也有很多,如混合编码(HybirdCoding)、矢量量化(VectorQuantize,VQ)、LZW算法。在这里,我们只介绍LZW算法的大体思想。值得注意的是,近些年来出现了很多新的压缩编码方法,如使用人工神经元网络(ArtificialNeuralNetwork,简称ANN)的压缩编码算法、分形(Fractl)、小波(Wavelet)、基于对象(ObjectBased)的压缩编码算法、基于模型(Model–Based)的压缩编码算法(应用在MPEG4及未来的视频压缩编码标准中)。

Ⅷ 图像压缩编码方法有哪几类

总的来说可以分为:有损编码、无损编码或者分为变换编码、统计编码。
有损编码
有损编码又称为不可逆编码,是指对图像进行有损压缩,致使解码重新构造的图像与原始图像存在一定的失真,即丢失了了部分信息。由于允许一定的失真,这类方法能够达到较高的压缩比。有损压缩多用于数字电视、静止图像通信等领域。
无损编码
无损压缩又称可逆编码,是指解压后的还原图像与原始图像完全相同,没有任何信息的损失。这类方法能够获得较高的图像质量,但所能达到的压缩比不高,常用于工业检测、医学图像、存档图像等领域的图像压缩中[15]。
预测编码
预测编码是利用图像信号在局部空间和时间范围内的高度相关性,以已经传出的近邻像素值作为参考,预测当前像素值,然后量化、编码预测误差。预测编码广泛应用于运动图像、视频编码如数字电视、视频电话中[ ]。
变换编码
变换编码是将空域中描述的图像数据经过某种正交变换(如离散傅里叶变换DFT、离散余弦变换DCT、离散小波变换DWT等)转换到另一个变换域(频率域)中进行描述,变换后的结果是一批变换系数,然后对这些变换系数进行编码处理,从而达到压缩图像数据的目的。
统计编码
统计编码也称为熵编码,它是一类根据信息熵原理进行的信息保持型变字长编码。编码时对出现概率高的事件(被编码的符号)用短码表示,对出现概率低的事件用长码表示。在目前图像编码国际标准中,常见的熵编码方法有哈夫曼(Huffman)编码和算术编码。

Ⅸ 典型的有损压缩编码方法错误的是

错误的是:啥夫曼编码将出现概率大的信源符号用长码表示,出现概率小的信源符号用短码表示。
对于多媒体数据,按照压缩的原理可分为熵编码、源编码和混合编码。其中,源编码包含预测编码去、变换编码法和矢量量化编码法,属于有损压缩编码,如表210所示。啥夫曼编码是最着名的熵编码,它将出现概率大的信源符号用短码表示,而出现概率小的信源符号用长码表示,于是平均码长接近信息熵的理论值。因此这个是错误的。

热点内容
存储报表能开发吗 发布:2025-01-23 13:42:02 浏览:703
腾讯地图ftp 发布:2025-01-23 13:38:43 浏览:16
linuxif判断文件存在 发布:2025-01-23 13:35:24 浏览:996
java一个字节 发布:2025-01-23 13:33:57 浏览:484
c程序编译过程 发布:2025-01-23 13:33:54 浏览:414
微信公众平台php 发布:2025-01-23 13:31:45 浏览:657
最底层的编程 发布:2025-01-23 13:30:21 浏览:78
sqlserver锁表解锁 发布:2025-01-23 13:26:32 浏览:132
达内培训深深圳Java机 发布:2025-01-23 13:16:13 浏览:192
各大编程软件 发布:2025-01-23 13:10:14 浏览:35