常用的缓存
㈠ 缓存的缓存分类
静态页面的缓存可能有2种形式:其实主要区别就是CMS是否自己负责关联内容的缓存更新管理。
1、静态缓存:是在新内容发布的同时就立刻生成相应内容的静态页面,比如:2003年3月22日,管理员通过后台内容管理界面录入一篇文章后,并同步更新相关索引页上的链接。
2、动态缓存:是在新内容发布以后,并不预先生成相应的静态页面,直到对相应内容发出请求时,如果前台缓存服务器找不到相应缓存,就向后台内容管理服务器发出请求,后台系统会生成相应内容的静态页面,用户第一次访问页面时可能会慢一点,但是以后就是直接访问缓存了。
静态缓存的缺点:
复杂的触发更新机制:这两种机制在内容管理系统比较简单的时候都是非常适用的。但对于一个关系比较复杂的网站来说,页面之间的逻辑引用关系就成为一个非常非常复杂的问题。最典型的例子就是一条新闻要同时出现在新闻首页和相关的3个新闻专题中,在静态缓存模式中,每发一篇新文章,除了这篇新闻内容本身的页面外,还需要系统通过触发器生成多个新的相关静态页面,这些相关逻辑的触发也往往就会成为内容管理系统中最复杂的部分之一。
旧内容的批量更新: 通过静态缓存发布的内容,对于以前生成的静态页面的内容很难修改,这样用户访问旧页面时,新的模板根本无法生效。
在动态缓存模式中,每个动态页面只需要关心,而相关的其他页面能自动更新,从而大大减少了设计相关页面更新触发器的需要。
软道语录
缓存
是把最常用的东西放在最容易取得的地方。
㈡ 缓存是什么
CPU缓存(Cache Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。
随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。
二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。
CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高。
双核心CPU的二级缓存比较特殊,和以前的单核心CPU相比,最重要的就是两个内核的缓存所保存的数据要保持一致,否则就会出现错误,为了解决这个问题不同的CPU使用了不同的办法:
Intel双核心处理器的二级缓存
目前Intel的双核心CPU主要有Pentium D、Pentium EE、Core Duo三种,其中Pentium D、Pentium EE的二级缓存方式完全相同。Pentium D和Pentium EE的二级缓存都是CPU内部两个内核具有互相独立的二级缓存,其中,8xx系列的Smithfield核心CPU为每核心1MB,而9xx系列的Presler核心CPU为每核心2MB。这种CPU内部的两个内核之间的缓存数据同步是依靠位于主板北桥芯片上的仲裁单元通过前端总线在两个核心之间传输来实现的,所以其数据延迟问题比较严重,性能并不尽如人意。
Core Duo使用的核心为Yonah,它的二级缓存则是两个核心共享2MB的二级缓存,共享式的二级缓存配合Intel的“Smart cache”共享缓存技术,实现了真正意义上的缓存数据同步,大幅度降低了数据延迟,减少了对前端总线的占用,性能表现不错,是目前双核心处理器上最先进的二级缓存架构。今后Intel的双核心处理器的二级缓存都会采用这种两个内核共享二级缓存的“Smart cache”共享缓存技术。
AMD双核心处理器的二级缓存
Athlon 64 X2 CPU的核心主要有Manchester和Toledo两种,他们的二级缓存都是CPU内部两个内核具有互相独立的二级缓存,其中,Manchester核心为每核心512KB,而Toledo核心为每核心1MB。处理器内部的两个内核之间的缓存数据同步是依靠CPU内置的System Request Interface(系统请求接口,SRI)控制,传输在CPU内部即可实现。这样一来,不但CPU资源占用很小,而且不必占用内存总线资源,数据延迟也比Intel的Smithfield核心和Presler核心大为减少,协作效率明显胜过这两种核心。不过,由于这种方式仍然是两个内核的缓存相互独立,从架构上来看也明显不如以Yonah核心为代表的Intel的共享缓存技术
㈢ ASP.NET缓存常见的4种方式有哪些
1、分布式缓存Memcached
2、内存缓存,此占用服务器资源
3、XML缓存,这种最为常见
4、DATATABLE缓存
㈣ java缓存技术常用的有哪些
常见的java缓存框架有:
OSCache
OSCache是个一个广泛采用的高性能的J2EE缓存框架,OSCache能用于任何Java应用程序的普通的缓存解决方案。
OSCache有以下特点:
缓存任何对象,你可以不受限制的缓存部分jsp页面或HTTP请求,任何java对象都可以缓存。
拥有全面的API--OSCache API给你全面的程序来控制所有的OSCache特性。
永久缓存--缓存能随意的写入硬盘,因此允许昂贵的创建(expensive-to-create)数据来保持缓存,甚至能让应用重启。
㈤ 网络中的缓存是什么
CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存是为了解决CPU速度和内存速度的速度差异问题。内存中被CPU访问最频繁的数据和指令被复制入CPU中的缓存,这样CPU就可以不经常到象“蜗牛”一样慢的内存中去取数据了,CPU只要到缓存中去取就行了,而缓存的速度要比内存快很多。
这里要特别指出的是:
1.因为缓存只是内存中少部分数据的复制品,所以CPU到缓存中寻找数据时,也会出现找不到的情况(因为这些数据没有从内存复制到缓存中去),这时CPU还是会到内存中去找数据,这样系统的速度就慢下来了,不过CPU会把这些数据复制到缓存中去,以便下一次不要再到内存中去取。
2.因为随着时间的变化,被访问得最频繁的数据不是一成不变的,也就是说,刚才还不频繁的数据,此时已经需要被频繁的访问,刚才还是最频繁的数据,现在又不频繁了,所以说缓存中的数据要经常按照一定的算法来更换,这样才能保证缓存中的数据是被访问最频繁的。
缓存的工作原理
[编辑本段]
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
一级缓存和二级缓存
[编辑本段]
为了分清这两个概念,我们先了解一下RAM 。RAM和ROM相对的,RAM是掉电以后,其中的信息就消失那一种,ROM在掉电以后信息也不会消失那一种。
RAM又分两种,一种是静态RAM,SRAM;一种是动态RAM,DRAM。前者的存储速度要比后者快得多,我们现在使用的内存一般都是动态RAM。
有的菜鸟就说了,为了增加系统的速度,把缓存扩大不就行了吗,扩大的越大,缓存的数据越多,系统不就越快了吗?缓存通常都是静态RAM,速度是非常的快, 但是静态RAM集成度低(存储相同的数据,静态RAM的体积是动态RAM的6倍), 价格高(同容量的静态RAM是动态RAM的四倍), 由此可见,扩大静态RAM作为缓存是一个非常愚蠢的行为, 但是为了提高系统的性能和速度,我们必须要扩大缓存, 这样就有了一个折中的方法,不扩大原来的静态RAM缓存,而是增加一些高速动态RAM做为缓存, 这些高速动态RAM速度要比常规动态RAM快,但比原来的静态RAM缓存慢, 我们把原来的静态ram缓存叫一级缓存,而把后来增加的动态RAM叫二级缓存。
一级缓存和二级缓存中的内容都是内存中访问频率高的数据的复制品(映射),它们的存在都是为了减少高速CPU对慢速内存的访问。 通常CPU找数据或指令的顺序是:先到一级缓存中找,找不到再到二级缓存中找,如果还找不到就只有到内存中找了。
缓存的技术发展
[编辑本段]
最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。
随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。
二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。
CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB、4MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高。
现在主流的CPU二级缓存都在2MB左右,其中英特尔公司07年相继推出了台式机用的4MB、6MB二级缓存的高性能CPU,不过价格也是相对比较高的,对于对配置要求不是太高的朋友,一般的2MB二级缓存的双核CPU基本也可以满足日常上网需要了。
㈥ CPU缓存一般分为哪两种
CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足 CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。
随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。
二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。
CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约 5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高
简单点说,电脑读取数据的时候先在CPU一级缓存里面寻找,找不到再到二级缓存中找,最后才到内存中寻找
因为它们的速度关系是
一级缓存>二级缓存>内存
而制造价格也是
一级缓存>二级缓存>内存
㈦ php中 常用的缓存技术有哪些
一般存储一条或者几条信息就用自带的SESSION 和COOKIA就可以搞定,如果要存储的内容多一些,比如一个列表或多个数据表的东西,就要用到mecache和redis 这两个缓存软件,其实这两个也属于数据库,用来存储搜索过后的信息!
㈧ 什么是缓存文件
高速缓存英文是cache。一种特殊的存储器子系统,其中复制了频繁使用的数据,以利于CPU快速访问。存储器的高速缓冲存储器存储了频繁访问的
RAM
位置的内容及这些数据项的存储地址。当处理器引用存储器中的某地址时,高速缓冲存储器便检查是否存有该地址。如果存有该地址,则将数据返回处理器;如果没有保存该地址,则进行常规的存储器访问。因为高速缓冲存储器总是比主RAM
存储器速度快,所以当
RAM
的访问速度低于微处理器的速度时,常使用高速缓冲存储器。
L1高速缓存,也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。采用回写(Write
Back)结构的高速缓存。它对读和写*作均有可提供缓存。而采用写通(Write-through)结构的高速缓存,仅对读*作有效。在486以上的计算机中基本采用了回写式高速缓存。在目前流行的处理器中,奔腾Ⅲ和Celeron处理器拥有32KB的L1高速缓存,奔腾4为8KB,而AMD的Duron和Athlon处理器的L1高速缓存高达128KB。
L2高速缓存,指CPU第二层的高速缓存,第一个采用L2高速缓存的是奔腾
Pro处理器,它的L2高速缓存和CPU运行在相同频率下的,但成本昂贵,市场生命很短,所以其后奔腾
II的L2高速缓存运行在相当于CPU频率一半下的。接下来的Celeron处理器又使用了和CPU同速运行的L2高速缓存,现在流行的CPU,无论是AthlonXP和奔腾4,其L2高速缓存都是和CPU同速运行的。除了速度以外,L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达1MB-3MB。
——》1,高速缓存(Cache),全称“高速缓冲存储器”。
——》2,例如:当CPU处理数据时,它会先到高速缓存中去寻找,如果数据因之前的操作已经读取而被暂存其中,就不需要再从主内存中读取数据——由于CPU的运行速度一般比主内存快,因此若要经常存取主内存的话,就必须等待数个CPU周期从而造成浪费。
——》3,提供“高速缓存”的目的是为了让数据存取的速度适应CPU的处理速度,其基于的原理是内存中“程序执行与数据访问的局域性行为”。
——》4,现在Cache的概念已经被扩充了:不仅在CPU和主内存之间有Cache,而且在内存和硬盘之间也有Cache(磁盘高速缓存),乃至在硬盘与网络之间也有某种意义上的“Cache”(Internet临时文件夹)。
——》5,凡是位于速度相差较大的两种硬件之间的,用于协调两者数据传输速度差异的结构,均可称之为Cache。
——》6,所以硬盘和内存之间的Cache就叫做磁盘高速缓存。它是在内存中开辟一块位置,来临时存取硬盘中的数据。这项技术可使计算机读写时的存储系统平均数据传输率提高5-10倍,适应了当前激增的海量数据存储需求。
——》7,在DOS时代,我们用:
smartdrv
内存容量
命令来加载硬盘高速缓存。自从有了Windows后,我们就不需要加载硬盘高速缓存了,因为Windows本身有自己的高速缓存管理单元,如果强行使用smartdrv命令加载,反而会影响Windows的性能。
——》8,我们在用硬盘安装Win2000/XP时候,系统会提示加载高速缓存,这是因为在安装的初期还是DOS操作,所以为了达到读存的速度,安装程序要求加载高速缓存
㈨ 常用的缓存技术
第一章 常用的缓存技术
1、常见的两种缓存
本地缓存:不需要序列化,速度快,缓存的数量与大小受限于本机内存
分布式缓存:需要序列化,速度相较于本地缓存较慢,但是理论上缓存的数量与大小无限(因为缓存机器可以不断扩展)
2、本地缓存
Google guava cache:当下最好用的本地缓存
Ehcache:spring默认集成的一个缓存,以spring cache的底层缓存实现类形式去操作缓存的话,非常方便,但是欠缺灵活,如果想要灵活使用,还是要单独使用Ehcache
Oscache:最经典简单的页面缓存
3、分布式缓存
memcached:分布式缓存的标配
Redis:新一代的分布式缓存,有替代memcached的趋势
3.1、memcached
经典的一致性hash算法
基于slab的内存模型有效防止内存碎片的产生(但同时也需要估计好启动参数,否则会浪费很多的内存)
集群中机器之间互不通信(相较于Jboss cache等集群中机器之间的相互通信的缓存,速度更快<--因为少了同步更新缓存的开销,且更适合于大型分布式系统中使用)
使用方便(这一点是相较于Redis在构建客户端的时候而言的,尽管redis的使用也不困难)
很专一(专做缓存,这一点也是相较于Redis而言的)
3.2、Redis
可以存储复杂的数据结构(5种)
strings-->即简单的key-value,就是memcached可以存储的唯一的一种形式,接下来的四种是memcached不能直接存储的四种格式(当然理论上可以先将下面的一些数据结构中的东西封装成对象,然后存入memcached,但是不推荐将大对象存入memcached,因为memcached的单一value的最大存储为1M,可能即使采用了压缩算法也不够,即使够,可能存取的效率也不高,而redis的value最大为1G)
hashs-->看做hashTable
lists-->看做LinkedList
sets-->看做hashSet,事实上底层是一个hashTable
sorted sets-->底层是一个skipList
有两种方式可以对缓存数据进行持久化
RDB
AOF
事件调度
发布订阅等
4、集成缓存
专指spring cache,spring cache自己继承了ehcache作为了缓存的实现类,我们也可以使用guava cache、memcached、redis自己来实现spring cache的底层。当然,spring cache可以根据实现类来将缓存存在本地还是存在远程机器上。
5、页面缓存
在使用jsp的时候,我们会将一些复杂的页面使用Oscache进行页面缓存,使用非常简单,就是几个标签的事儿;但是,现在一般的企业,前台都会使用velocity、freemaker这两种模板引擎,本身速度就已经很快了,页面缓存使用的也就很少了。
总结:
在实际生产中,我们通常会使用guava cache做本地缓存+redis做分布式缓存+spring cache就集成缓存(底层使用redis来实现)的形式
guava cache使用在更快的获取缓存数据,同时缓存的数据量并不大的情况
spring cache集成缓存是为了简单便捷的去使用缓存(以注解的方式即可),使用redis做其实现类是为了可以存更多的数据在机器上
redis缓存单独使用是为了弥补spring cache集成缓存的不灵活
就我个人而言,如果需要使用分布式缓存,那么首先redis是必选的,因为在实际开发中,我们会缓存各种各样的数据类型,在使用了redis的同时,memcached就完全可以舍弃了,但是现在还有很多公司在同时使用memcached和redis两种缓存。
㈩ JAVA目前比较常用的缓存有哪些 集中式缓存与分布式缓存有何区别 它们应用场景是
java目前常用的缓存:
Generic
JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, etc)
EhCache 2.x
Hazelcast
Infinispan
Couchbase
Redis
Caffeine
Guava (deprecated)
Simple
建议使用spring boot集成方式,可插拔,简单。
集中式缓存适用场景:
1、服务器集群部署。
2、数据高一致性(任何数据变化都能及时的被查询到)
分布式缓存适用场景:
系统需要缓存的数据量大
对数据的可用性较高的情况
需要横向扩展,从而达到缓存的容量无限的要求