当前位置:首页 » 文件管理 » nm文件夹

nm文件夹

发布时间: 2022-04-21 04:44:10

1. linux 中 GNU binutils命令 nm列出目标文件中的符号。。。 如果对test可执行文件使用nm, 会有什么结果呢

可执行文件也可以看。如果可执行文件被strip过,可能没有符号:
$ nm -a /usr/bin/test
nm: /usr/bin/test: no symbols

试试用-D看动态加载的符号:
$ nm -D /usr/bin/test
...
U __ctype_b_loc
U __ctype_get_mb_cur_max
U __cxa_atexit
U __errno_location
U __fpending
U __fprintf_chk
w __gmon_start__
U __libc_start_main
U __lxstat64
U __overflow
U __printf_chk
...

2. 华为nov3手机文件夹微信的英文是什么nm

华为nov3的下载的微信上的文件夹还是很好找的,你可以到文件管理里去找到英语为tencent这个文件夹你打开这个文件夹一次进入到micromsg这个文件夹你进入就是微信的文件夹。

3. 解压无法 文件nm.bik

nm.bik 是个广告文件 ,好多原因都能导致解压不成啊 系统不兼容 关掉杀毒软件试试,或者文件不完整

4. 我卸载了qq游戏,C盘里的progranm文件夹里为什么还有腾讯游戏,删了的话再下到别的盘里可以吗

那里边是备份和记录,可以直接删除....

5. mater30手机里的视频怎么移动到nm卡上去并且不在重复出现在手机的视频文件夹里

可以把视频转移到外置内存卡或者U盘中,外置内存卡的话设个隐身就好

6. 马拉尼文件夹是什么

这是2006年5月底发布的第一种Socket AM2接口Sempron的核心类型,其名称来源于菲律宾首都马尼拉(Manila)。Manila核心定位于桌面低端处理器,采用90nm制造工艺,不支持虚拟化技术AMD VT,仍然采用800MHz的HyperTransport总线,二级缓存为256KB或128KB,最大亮点是支持双通道DDR2 667内存,这是其与只支持单通道DDR 400内存的Socket 754接口Sempron的最大区别。Manila核心Sempron分为TDP功耗62W的标准版(核心电压1.35V左右)和TDP功耗35W的超低功耗版(核心电压1.25V左右)。除了支持双通道DDR2之外,Manila核心Sempron相对于以前的Socket 754接口Sempron并无架构上的改变,性能并无多少出彩之处。

7. qqnmtf3.34-xixiwg是什么文件夹

这是预防U盘和手机卡的auto病毒文件.
不需要删除,
删除的话使用U盘很容易中毒的

8. NM文件是什么

NM
即纳米,符号为nm。1纳米=1毫微米=10米(既十亿分之一米),约为10个原子的长度。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。
纳米技术的含义-1
. 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显着地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
. 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。
. 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
纳米技术的含义-2
纳米技术(纳米科技nanotechnology)
纳米技术其实就是一种用单个原子、分子制造物质的技术。
从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。
所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显着地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。
纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国着名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。
虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究
纳米电子器件的特点
. 以纳米技术制造的电子器件,其性能大大优于传统的电子器件:
. 工作速度快,纳米电子器件的工作速度是硅器件的1000倍,因而可使产品性能大幅度提高。功耗低,纳米电子器件的功耗仅为硅器件的1/1000。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。体积小、重量轻,可使各类电子产品体积和重量大为减小。

二、
NM
这种是在钢铁行业的叫法:耐磨
如NM360(耐磨三六零)

9. linux nm 命令

/usr/ccs/bin/nm

用途

显示关于对象文件、可执行文件以及对象文件库里的符号信息。

语法

nm [ -A ] [ -C ] [ -X {32|64|32_64}] [ -f ] [ -h ] [ -l ] [ -p ] [ -r ] [ -T ] [ -v ] [ -B | -P ] [ -e | -g | -u ] [ -d | -o | -x | -t Format ] File ...

描述

nm 命令显示关于指定 File 中符号的信息,文件可以是对象文件、可执行文件或对象文件库。如果文件没有包含符号信息,nm 命令报告该情况,但不把它解释为出错条件。 nm 命令缺省情况下报告十进制符号表示法下的数字值。

nm 命令把以下符号信息写入标准输出:

库或对象名
如果您指定了 -A 选项,则 nm 命令只报告与该文件有关的或者库或者对象名。

符号名称
符号类型
nm 命令使用以下符号(用同样的字符表示弱符号作为全局符号)之一来表示文件符号类型:

A Global absolute 符号。
a Local absolute 符号。
B Global bss 符号。
b Local bss 符号。
D Global data 符号。
d Local data 符号。
f 源文件名称符号。
T Global text 符号。
t Local text 符号。
U 未定义符号。

大小
如果可应用,nm 命令报告与符号有关的大小。

标志

-A 每行或者显示全路径名称或者显示对象库名。
-B 在 Berkeley 软件分发(BSD)格式中显示输出:
值 类型 名称
-C 限制解码(demangle) C++ 名称。缺省是解码所有 C++ 符号名。
注:
C++ 对象文件中的符号在被使用前它们的名称已经被解码了。
-d 用十进制显示符号的值和大小。这是缺省的。
-e 只显示静态的和外部的(全局)符号。
-f 显示完整的输出,包括冗余的 .text、 .data 以及 .bss 符号,这些在通常都是被限制的。
-g 只显示外部的(全局)符号。
-h 限制输出头数据的显示。
-l 通过给 WEAK 符号的编码键附加一个 * 来区分 WEAK 和 GLOBAL 符号。如果和 -P 选项一起使用, WEAK 符号的符号类型显示如下:
V
Weak Data 符号
W
Weak Text 符号
w
Weak 未定义符号
Z
Weak bss 符号
-o 用八进制而不是十进制数来显示符号的值和大小。
-P 以标准可移植输出格式显示信息:
库/对象名 名称 类型 值 大小
该格式以十六进制符号表示法显示数字值,除非您用 -t、-d 或 -o 标志指定不同的格式。

如果您指定了 -A 标志 -P 标志只显示 库/对象名字段。同样,-P 标志只显示大小适用的符号大小字段。

-p 不排序。输出按符号表顺序打印。
-r 倒序排序。
-T 把可能会溢出它的列的每个名字截短,使显示的名字的最后一个字符是星号(*)。缺省情况下,nm 显示列出的符号的全名,并且一个比为其设置的列的宽度长的名称会引起名称后的每个列无法对齐。
-t Format 显示指定格式下的数字值,其中 Format 参数是以下符号表示法之一:
d
十进制符号表示法。这是 nm 命令的缺省格式。
o
八进制符号表示法。
x
十六进制符号表示法。
-u 只显示未定义符号。
-v 按值而不是按字母表顺序排序输出。
-x 用十六进制而不是十进制数来显示符号的值和大小。
-X mode 指定 nm 应该检查的对象文件的类型。 mode 必须是下列之一:
32
只处理 32 位对象文件
64
只处理 64 位对象文件
32_64
处理 32 位和 64 位对象文件
缺省是处理 32 位对象文件(忽略 64 位对象)。 mode 也可以 OBJECT_MODE 环境变量来设置。例如,OBJECT_MODE=64 使 nm 处理任何 64 位对象并且忽略 32 位对象。 -X 标志覆盖 OBJECT_MODE 变量。

注:
nm 命令支持 -- (双连字符)标志。如果文件名会被曲解为一个选项,该标志区别于 File 操作数。例如,要指定文件名以连字符开始,请使用 -- 标志。
退出状态

该命令返回下列出口值:

0 成功完成。
>0 发生错误。
示例

列出 a.out 对象文件的静态和外部符号,请输入:
nm -e a.out
以十六进制显示符号大小和值并且按值排序符号,请输入:
nm -xv a.out
显示 libc.a 中所有 64 位对象符号,忽略所有 32 位对象:
nm -X64 /usr/lib/libc.a
文件

10. nm和readelf命令的区别

readelf elf-file(s)

[功能]
用于显示elf格式文件的信息。

[描述]
readelf用来显示一个或者多个elf格式的目标文件的信息,可以通过它的选项来控制显示哪些信息。这里的elf-file(s)就表示那些被检查的文件。可以支持32位,64位的elf格式文件,也支持包含elf文件的文档(这里一般指的是使用ar命令将一些elf文件打包之后生成的例如lib*.a之类的“静态库”文件)。
这个程序和objmp提供的功能类似,但是它显示的信息更为具体,并且它不依赖BFD库(BFD库是一个GNU项目,它的目标就是希望通过一种统一的接口来处理不同的目标文件),所以即使BFD库有什么bug存在的话也不会影响到readelf程序。
运行readelf的时候,除了-v和-H之外,其它的选项必须有一个被指定。

ELF文件类型:
种类型的ELF文件:
a)可重定位文件:用户和其他目标文件一起创建可执行文件或者共享目标文件,例如lib*.a文件。
b)可执行文件:用于生成进程映像,载入内存执行,例如编译好的可执行文件a.out。
c)共享目标文件:用于和其他共享目标文件或者可重定位文件一起生成elf目标文件或者和执行文件一起创建进程映像,例如lib*.so文件。

ELF文件作用:
ELF文件参与程序的连接(建立一个程序)和程序的执行(运行一个程序),所以可以从不同的角度来看待elf格式的文件:
a)如果用于编译和链接(可重定位文件),则编译器和链接器将把elf文件看作是节头表描述的节的集合,程序头表可选。
b)如果用于加载执行(可执行文件),则加载器则将把elf文件看作是程序头表描述的段的集合,一个段可能包含多个节,节头表可选。
c)如果是共享文件,则两者都含有。

ELF文件总体组成:
elf文件头描述elf文件的总体信息。包括:
系统相关,类型相关,加载相关,链接相关。
系统相关表示:elf文件标识的魔术数,以及硬件和平台等相关信息,增加了elf文件的移植性,使交叉编译成为可能。
类型相关就是前面说的那个类型。
加载相关:包括程序头表相关信息。
链接相关:节头表相关信息。

项(分别以长格式和短格式给出了):
-a
--all 显示全部信息,等价于 -h -l -S -s -r -d -V -A -I.

-h
--file-header 显示elf文件开始的文件头信息.

-l
--program-headers
--segments 显示程序头(段头)信息(如果有的话)。

-S
--section-headers
--sections 显示节头信息(如果有的话)。

-g
--section-groups 显示节组信息(如果有的话)。

-t
--section-details 显示节的详细信息(-S的)。

-s
--syms
--symbols 显示符号表段中的项(如果有的话)。

-e
--headers 显示全部头信息,等价于: -h -l -S

-n
--notes 显示note段(内核注释)的信息。

-r
--relocs 显示可重定位段的信息。

-u
--unwind 显示unwind段信息。当前只支持IA64 ELF的unwind段信息。

-d
--dynamic 显示动态段的信息。

-V
--version-info 显示版本段的信息。

-A
--arch-specific 显示CPU构架信息。

-D
--use-dynamic 使用动态段中的符号表显示符号,而不是使用符号段。

-x
--hex-mp= 以16进制方式显示指定段内内容。number指定段表中段的索引,或字符串指定文件中的段名。

-w[liaprmfFsoR] or
--debug-mp[=line,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=loc,=Ranges]
显示调试段中指定的内容。

-I
--histogram 显示符号的时候,显示bucket list长度的柱状图。

-v
--version 显示readelf的版本信息。

-H
--help 显示readelf所支持的命令行选项。

-W
--wide 宽行输出。

@file 可以将选项集中到一个文件中,然后使用这个@file选项载入。

[举例]
先给出如下例子:
1,对于可执行文件形式的elf格式文件:
1)查看可执行程序的源代码如下:
[quietheart@lv-k cppDemo]$ cat main.cpp
#include
using std::cout;
using std::endl;
void my_print();

int main(int argc, char *argv[])
{
my_print();
cout<<"hello!"<<endl;
return 0;
}

void my_print()
{
cout<<"print!"<<endl;
}

2)编译如下:
[quietheart@lv-k cppDemo]$ g++ main.cpp -o main
[quietheart@lv-k cppDemo]$ g++ -g main.cpp -o main.debug

3)编译之后,查看生成的文件:
[quietheart@lv-k cppDemo]$ ls -l
总计 64
-rwxr-xr-x 1 quietheart quietheart 6700 07-07 18:04 main
-rw-r--r-- 1 quietheart quietheart 201 07-07 18:02 main.cpp
-rwxr-xr-x 1 quietheart quietheart 38932 07-07 18:04 main.debug
这里,main.debug是带有调试信息的可执行文件,main是一般的可执行文件。

2,对于库文件形式的elf格式文件:
1)查看库的源代码如下:
//myfile.h
#ifndef __MYFILE_H
#define __MYFILE_H
void printInfo();
#endif

//myfile.cpp
#include "myfile.h"
#include
using std::cout;
using std::endl;
void printInfo()
{
cout<<"hello"<<endl;
}
2)编译如下:
[quietheart@lv-k bak]$ g++ -c myfile.cpp
[quietheart@lv-k bak]$ g++ -shared -fPCI -o libmy.so myfile.o
[quietheart@lv-k bak]$ ar -r libmy.a myfile.o
ar: creating libmy.a

3)编译之后,查看生成的文件:
[quietheart@lv-k bak]$ ls -l
总计 44
-rw-r--r-- 1 quietheart quietheart 2154 07-08 16:14 libmy.a
-rwxr-xr-x 1 quietheart quietheart 5707 07-08 16:08 libmy.so
-rwxr-xr-x 1 quietheart quietheart 117 07-08 16:06 myfile.cpp
-rwxr-xr-x 1 quietheart quietheart 63 07-08 16:08 myfile.h
-rw-r--r-- 1 quietheart quietheart 2004 07-08 16:08 myfile.o
libmy.a libmy.so myfile.cpp myfile.h myfile.o
这里,分别生成目标文件myfile.o,共享库文件libmy.so,和静态库文件libmy.a。

热点内容
电脑配置信息被改怎么看到 发布:2024-11-07 01:17:06 浏览:776
linuxgc 发布:2024-11-07 00:51:56 浏览:316
乐视改密码是什么意思 发布:2024-11-07 00:47:07 浏览:486
linux图形界面系统 发布:2024-11-07 00:42:00 浏览:999
群控ip是服务器ip么 发布:2024-11-07 00:39:43 浏览:564
安卓手机上制表app哪个好 发布:2024-11-07 00:28:06 浏览:117
电脑进服务器卡了退不出来怎么办 发布:2024-11-07 00:23:30 浏览:763
安卓哪个型号不卡 发布:2024-11-07 00:19:03 浏览:485
mxml库编译 发布:2024-11-07 00:18:07 浏览:213
dnsdns服务器地址 发布:2024-11-07 00:16:23 浏览:11