压缩感知matlab
1. 什么是“压缩感知”
压缩感知, 也成为压缩采样。英文为Compressed Sampling 或者是 Compressive Sening。于2006年被提出,并被美国科技评论评为2007年度十大科技进展。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,网络知道里面一下介绍不清楚。
视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。
如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.e/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。
2. 算法工程师大致是做什么的
各个行业都有算法部分,统计有统计的算法,控制有控制的算法,图像处理有图像处理的算法。在很多传统行业,算法不是一个独立的岗位,而是由研发工程师负责。今天小编就带大家来了解下算法工程师大致是做什么的?我们接着往下看。
1. 图像处理,尤其是基于OpenCV的图像处理算法,一般产品里有做美颜,滤镜什么的特别喜欢招这块的小朋友,近一两年有被做深度学习的取代的趋势。最近google出了arcore,所以让不少小公司也能出一些效果很好的换头类应用。
2. 计算机图形学,这也算是一个大类,主要涉及到图形渲染算法,光追算法,三维图像重构等图像绘制方面的内容。这个方向,不光是做3d引擎和游戏开发方面,对于很多行业需要与cad相关的,都会涉及到这一个领域的模型和优化算法设计。
3. VR,AR领域,涉及到的包括视频跟踪,SLAM,raytracing,几何投影等等,实际上是一个综合的领域,目前主要是做计算机视觉的转行做这块。
4. 医学影像处理,三维图像重构,用在B超,CT成像上,这个是医疗方向的。
5. 通信基带信号处理,网络优化算法,这一块其实很式微了,毕竟高大上的算法小公司没成本去实施。
6. 音频滤波,用在HiFi产品,比如车载音响,手机厂商,圈子其实蛮小的。
7. 控制算法,自适应滤波算法,用在机械领域上,比如机械臂行程控制,稳定性。
8. 有限元算法,这块从雷达,机械,电磁学,到服装设计,都有很有价值的应用。
9. 信号处理,比如插值,频谱分析,盲信号分离,压缩感知,物联网大部分应用会涉及这一块。
互联网和软件行业把算法分离成一个独立的岗位大体有两个原因。第一,低级的软件工程师不懂算法,或者更干脆一点说不懂数学,所有涉及到模型和计算公式的工作都必须要找专业人员来搞定。第二,从生产效率考虑,初级算法工程师很多没有很好的软件工程背景,简单点说就是不会写代码只会写matlab,这种工程师的工作交付没有办法直接投入生产,所以需要将他们的工作和生产环节隔离开。综上所述,就是小编今天给大家分享的内容,希望可以帮助到大家。