pythonredis缓存
‘壹’ python性能提升神器!lru_cache的介绍和讲解
我们经常谈论的缓存一词,更多的类似于将硬盘中的数据存放到内存中以至于提高读取速度,比如常说的redis,就经常用来做数据的缓存。 Python的缓存(lru_cache)是一种装饰在被执行的函数上,将其执行的结果缓存起来,当下次请求的时候,如果请求该函数的传参未变则直接返回缓存起来的结果而不再执行函数的一种缓存装饰器。
那它和redis的区别在哪?有什么优势?怎么使用? 下面为你讲解
1.现在我们先不使用缓存来写一个求两数之和的函数,并调用执行它两次:
执行结果
可以看到 test 被执行了两次,现在我们加上缓存再进行执行:
执行结果
可以看到 test 函数只被执行了一次,第二次的调用直接输出了结果,使用了缓存起来的值。
2.当我们使用递归求斐波拉契数列 (斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,它从第3项开始,每一项都等于前两项之和) 的时候,缓存对性能的提升就尤其明显了:
不使用缓存求第40项的斐波拉契数列
执行时间
使用缓存求第40项的斐波拉契数列:
执行时间
两个差距是非常明显的,因为不使用缓存时,相当于要重复执行了很多的函数,而使用了 lru_cache 则把之前执行的函数结果已经缓存了起来,就不需要再次执行了。
查看lru_cache源码会发现它可以传递两个参数: maxsize 、 typed :
代表被lru_cache装饰的方法最大可缓存的结果数量 (被装饰方法传参不同一样,则结果不一样;如果传参一样则为同一个结果) , 如果不指定传参则默认值为128,表示最多缓存128个返回结果,当达到了128个时,有新的结果要保存时,则会删除最旧的那个结果。如果maxsize传入为None则表示可以缓存无限个结果;
默认为false,代表不区分数据类型,如果设置为True,则会区分传参类型进行缓存,官方是这样描述的:
但在python3.9.8版本下进行测试,typed为false时,按照官方的测试方法测试得到的还是会被当成不同的结果处理,这个时候typed为false还是为true都会区别缓存,这与官方文档的描述存在差异:
执行结果
但如果是多参数的情况下,则会被当成一个结果:
执行结果
这个时候设置typed为true时,则会区别缓存:
执行结果
当传参个数大于1时,才符合官方的说法,不清楚是不是官方举例有误
当传递的参数是dict、list等的可变参数时,lru_cache是不支持的,会报错:
报错结果
缓存 缓存位置 是否支持可变参数 是否支持分布式 是否支持过期时间设置 支持的数据结构 需单独安装 redis 缓存在redis管理的内存中 是 是 是 支持5种数据结构 是 lru_cache 缓存在应用进程的内存中,应用被关闭则被清空 否 否 否 字典(参数为:key,结果为:value) 否
经过上面的分析,lru_cache 功能相对于redis来说要简单许多,但使用起来更加方便,适用于小型的单体应用。如果涉及的缓存的数据种类比较多并且想更好的管理缓存、或者需要缓存数据有过期时间(类似登录验证的token)等,使用redis是优于lru_cache的。
‘贰’ 一般项目为了解决什么问题而使用redis
redis是内存数据库,访问速度非常快,所以能够解决的也都是这些缓存类型的问题,如下:
1、会话缓存(Session Cache)
最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
2、全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
3、队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
‘叁’ python中的redis有多少个数据库
跟Python没有关系,是redis的问题
1、redis 中的每一个数据库,都由一个 redisDb 的结构存储。其中,redisDb.id 存储着 redis 数据库以整数表示的号码。redisDb.dict 存储着该库所有的键值对数据。redisDb.expires 保存着每一个键的过期时间。
2、当redis 服务器初始化时,会预先分配 16 个数据库(该数量可以通过配置文件配置),所有数据库保存到结构 redisServer 的一个成员 redisServer.db 数组中。当我们选择数据库 select number 时,程序直接通过 redisServer.db[number] 来切换数据库。有时候当程序需要知道自己是在哪个数据库时,直接读取 redisDb.id 即可。
3、既然我们知道一个数据库的所有键值都存储在redisDb.dict中,那么我们要知道如果找到key的位置,就有必要了解一下dict 的结构了:
typedef struct dict {
// 特定于类型的处理函数
dictType *type;
// 类型处理函数的私有数据
void *privdata;
// 哈希表(2个)
dictht ht[2];
// 记录 rehash 进度的标志,值为-1 表示 rehash 未进行
int rehashidx;
// 当前正在运作的安全迭代器数量
int iterators;
} dict;
由上述的结构可以看出,redis 的字典使用哈希表作为其底层实现。dict 类型使用的两个指向哈希表的指针,其中 0 号哈希表(ht[0])主要用于存储数据库的所有键值,而1号哈希表主要用于程序对 0 号哈希表进行 rehash 时使用,rehash 一般是在添加新值时会触发,这里不做过多的赘述。所以redis 中查找一个key,其实就是对进行该dict 结构中的 ht[0] 进行查找操作。
4、既然是哈希,那么我们知道就会有哈希碰撞,那么当多个键哈希之后为同一个值怎么办呢?redis采取链表的方式来存储多个哈希碰撞的键。也就是说,当根据key的哈希值找到该列表后,如果列表的长度大于1,那么我们需要遍历该链表来找到我们所查找的key。当然,一般情况下链表长度都为是1,所以时间复杂度可看作o(1)。
二、当redis 拿到一个key 时,如果找到该key的位置。
了解了上述知识之后,我们就可以来分析redis如果在内存找到一个key了。
1、当拿到一个key后, redis 先判断当前库的0号哈希表是否为空,即:if (dict->ht[0].size == 0)。如果为true直接返回NULL。
2、判断该0号哈希表是否需要rehash,因为如果在进行rehash,那么两个表中者有可能存储该key。如果正在进行rehash,将调用一次_dictRehashStep方法,_dictRehashStep 用于对数据库字典、以及哈希键的字典进行被动 rehash,这里不作赘述。
3、计算哈希表,根据当前字典与key进行哈希值的计算。
4、根据哈希值与当前字典计算哈希表的索引值。
5、根据索引值在哈希表中取出链表,遍历该链表找到key的位置。一般情况,该链表长度为1。
6、当 ht[0] 查找完了之后,再进行了次rehash判断,如果未在rehashing,则直接结束,否则对ht[1]重复345步骤。
到此我们就找到了key在内存中的位置了。