ehcache更新缓存
‘壹’ 刷新ehcache缓存怎么刷新
spring 配置文件 <bean id="cacheManager" class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean"> <property name="configLocation"> <value>classpath:config/ehcache.xml </value> </property> </bean> <bean id="baseCache" class="org.springframework.cache.ehcache.EhCacheFactoryBean"> <property name="cacheManager" ref="cacheManager" /> <property name="cacheName"> <value>cacheNameXXXX</value> </property> </bean> 在代码中使用的时候从springContext中取到baseCache 存: baseCache.put(new Element(key,value)); 取:baseCache.get(key); 缓存自动刷新:可以在执行更新、删除数据库操作的时候同时对缓存进行更新,也可以直接清除缓存,下一次查询时再加载,毕竟缓存中的数据不是经常更改的数据。
‘贰’ hibernate二级缓存 和 spring整合的缓存(就是用哪个Cacheable注解的)有什么区别么
二级缓存配置(spring+hibernate)
说明:本人不建议使用查询缓存,因为查询缓存要求完全相同的查询sql语句才会起作用,所说的查询缓存是针对第二次查询时 sql语句与第一次sql语句完全相同 那么就可以从缓存中取数据而不去数据库中取数据了,在不启用查询缓存的情况下 每次的查询数据也会缓存到二级缓存的 只不过每次查询都会去查询数据库(不包括根据ID查询),启用查询缓存很麻烦 需要每次查询时 调用Query.setCacheable(true)方法才可以,如:List<OrgiData> orgiDatas = (List<OrgiData>) s.createQuery("from OrgiData").setCacheable(true).list();
因此建议将查询缓存设置为如下:
hibernate.cache.use_query_cache=false
还有就是最重要的一点:对于经常修改或重要的数据不宜进行缓存,因为多并发时会造成数据不同步的情况。
首先增加ehcache-1.4.1.jar和backport-util-concurrent-3.1.jar或oscache-2.1.jar
一、spring配置
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<property name="dataSource" ref="dataSource" />
<property name="mappingResources">
<list>
<value>com/handpay/core/merchant/bean/MerchGroupBuy.hbm.xml
</value>
</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=org.hibernate.dialect.SQLServerDialect
hibernate.show_sql=true
hibernate.format_sql=true
hibernate.hbm2ddl.auto=update
hibernate.cache.use_second_level_cache=true
hibernate.cache.use_query_cache=false
hibernate.cache.provider_class=org.hibernate.cache.EhCacheProvider </value>
</property>
</bean>
<!---红色字体是二级缓存相关的设置->
二、hbm.xml文件示例
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="com.handpay.core.merchant.bean">
<class name="MerchGroupBuy" table="merch_group_buy">
<cache usage="read-write" region="com.handpay.core.merchant.bean.MerchGroupBuy"/>
<id name="id">
<generator class="native" />
</id>
<property name="code" />
<property name="createTime"/>
<property name="minNum"/>
<property name="status">
</property>
<property name="title"/>
<property name="typeCode"/>
<property name="updateTime"/>
</class>
</hibernate-mapping>
三、注解示例
@Entity
@Cache(usage = CacheConcurrencyStrategy.READ_ONLY)
@Table(name = "alcor_t_countries", catalog = "alcorweb")
public class AlcorTCountries implements java.io.Serializable{。。。。}
四、配置文件参数详解
ehcache.xml是ehcache的配置文件,并且存放在应用的classpath中。下面是对该XML文件中的一些元素及其属性的相关说明:
<diskStore>元素:指定一个文件目录,当EHCache把数据写到硬盘上时,将把数据写到这个文件目录下。 下面的参数这样解释:
user.home – 用户主目录
user.dir – 用户当前工作目录
java.io.tmpdir – 默认临时文件路径
<defaultCache>元素:设定缓存的默认数据过期策略。
<cache>元素:设定具体的命名缓存的数据过期策略。
<cache>元素的属性
name:缓存名称。通常为缓存对象的类名(非严格标准)。
maxElementsInMemory:设置基于内存的缓存可存放对象的最大数目。
maxElementsOnDisk:设置基于硬盘的缓存可存放对象的最大数目。
eternal:如果为true,表示对象永远不会过期,此时会忽略timeToIdleSeconds和timeToLiveSeconds属性,默认为false;
timeToIdleSeconds: 设定允许对象处于空闲状态的最长时间,以秒为单位。当对象自从最近一次被访问后,如果处于空闲状态的时间超过了timeToIdleSeconds属性值,这个对象就会过期。当对象过期,EHCache将把它从缓存中清空。只有当eternal属性为false,该属性才有效。如果该属性值为0,则表示对象可以无限期地处于空闲状态。
timeToLiveSeconds:设定对象允许存在于缓存中的最长时间,以秒为单位。当对象自从被存放到缓存中后,如果处于缓存中的时间超过了 timeToLiveSeconds属性值,这个对象就会过期。当对象过期,EHCache将把它从缓存中清除。只有当eternal属性为false,该属性才有效。如果该属性值为0,则表示对象可以无限期地存在于缓存中。timeToLiveSeconds必须大于timeToIdleSeconds属性,才有意义。
overflowToDisk:如果为true,表示当基于内存的缓存中的对象数目达到了maxElementsInMemory界限后,会把益出的对象写到基于硬盘的缓存中。注意:如果缓存的对象要写入到硬盘中的话,则该对象必须实现了Serializable接口才行。
memoryStoreEvictionPolicy:缓存对象清除策略。有三种:
1 FIFO ,first in first out ,这个是大家最熟的,先进先出,不多讲了
2 LFU , Less Frequently Used ,就是上面例子中使用的策略,直白一点就是讲一直以来最少被使用的。如上面所讲,缓存的元素有一个hit 属性,hit 值最小的将会被清出缓存。
2 LRU ,Least Recently Used ,最近最少使用的,缓存的元素有一个时间戳,当缓存容量满了,而又需要腾出地方来缓存新的元素的时候,那么现有缓存元素中时间戳离当前时间最远的元素将被清出缓存。
五 、查看 二级缓存数据
1、使用sessionFactory直接获取
Map cacheEntries = sessionFactory().getStatistics()
.getSecondLevelCacheStatistics("cacheRegionName")
.getEntries();
其中 cacheRegionName 既是 ehcache.xml配置中的<cache 标签的name属性值
2、让log4j打印缓存信息(生成环境下请注释掉,以免影响性能)
log4j.logger.org.hibernate.cache=debug
‘叁’ EhCache、OsCache、JBossCache性能上的差别:
在开发高并发量,高性唯改历能的网站应用系统时,缓存Cache起到了非常重要的作用。本文主要介绍EHCache的使用,以及使用EHCache的实践经验。笔者使用过多种基于Java的开源Cache组件,其中包括OSCache、JBossCache、EHCache。OSCache功能强大,使用灵活,可用于对象缓存、Filter缓存以及在JSP中直接使用cache标签。笔者在最近的使用过程中发现,在并发量较高时,OSCache会出现线程阻塞和数据错误,通过分析源代码发现是其内部实现的缺陷。JBossCache最大的优点是支持基于对象属性的集群同步,不过JBossCache的配置使用都较复杂,在并发量较指搜高的情况下,对象属性数据在集群中同步也会加大系统的开销。以上两种Cache本文仅作简单介绍,不做深入探讨。EHCache是来自sourceforge(通过manager可以生成指定名称的Cache对象Cachecache=cache=manager.getCache("demoCache");//使用manager移除指定名称的Cache对象manager.removeCache("demoCache");可以通过调用manager.removalAll()来移除所有的Cache。通过调用manager的shutdown()方法可以关闭CacheManager。有了Cache对象之后就可以进行一些基本的Cache操作,例如://往cache中添加元素Elementelement=newElement("key","value");cache.put(element);//从cache中取回元素Elementelement=cache.get("key");element.getValue();//从Cache中移除一个元素cache.remove("key");可以直接使用上面歼销的API进行数据对象的缓存,这里需要注意的是对于缓存的对象都是必须可序列化的。在下面的篇幅中笔者还会介绍EHCache和Spring、Hibernate的整合使用。
‘肆’ 常用的缓存技术
第一章 常用的缓存技术
1、常见的两种缓存
本地缓存:不需要序列化,速度快,缓存的数量与大小受限于本机内存
分布式缓存:需要序列化,速度相较于本地缓存较慢,但是理论上缓存的数量与大小无限(因为缓存机器可以不断扩展)
2、本地缓存
Google guava cache:当下最好用的本地缓存
Ehcache:spring默认集成的一个缓存,以spring cache的底层缓存实现类形式去操作缓存的话,非常方便,但是欠缺灵活,如果想要灵活使用,还是要单独使用Ehcache
Oscache:最经典简单的页面缓存
3、分布式缓存
memcached:分布式缓存的标配
Redis:新一代的分布式缓存,有替代memcached的趋势
3.1、memcached
经典的一致性hash算法
基于slab的内存模型有效防止内存碎片的产生(但同时也需要估计好启动参数,否则会浪费很多的内存)
集群中机器之间互不通信(相较于Jboss cache等集群中机器之间的相互通信的缓存,速度更快<--因为少了同步更新缓存的开销,且更适合于大型分布式系统中使用)
使用方便(这一点是相较于Redis在构建客户端的时候而言的,尽管redis的使用也不困难)
很专一(专做缓存,这一点也是相较于Redis而言的)
3.2、Redis
可以存储复杂的数据结构(5种)
strings-->即简单的key-value,就是memcached可以存储的唯一的一种形式,接下来的四种是memcached不能直接存储的四种格式(当然理论上可以先将下面的一些数据结构中的东西封装成对象,然后存入memcached,但是不推荐将大对象存入memcached,因为memcached的单一value的最大存储为1M,可能即使采用了压缩算法也不够,即使够,可能存取的效率也不高,而redis的value最大为1G)
hashs-->看做hashTable
lists-->看做LinkedList
sets-->看做hashSet,事实上底层是一个hashTable
sorted sets-->底层是一个skipList
有两种方式可以对缓存数据进行持久化
RDB
AOF
事件调度
发布订阅等
4、集成缓存
专指spring cache,spring cache自己继承了ehcache作为了缓存的实现类,我们也可以使用guava cache、memcached、redis自己来实现spring cache的底层。当然,spring cache可以根据实现类来将缓存存在本地还是存在远程机器上。
5、页面缓存
在使用jsp的时候,我们会将一些复杂的页面使用Oscache进行页面缓存,使用非常简单,就是几个标签的事儿;但是,现在一般的企业,前台都会使用velocity、freemaker这两种模板引擎,本身速度就已经很快了,页面缓存使用的也就很少了。
总结:
在实际生产中,我们通常会使用guava cache做本地缓存+redis做分布式缓存+spring cache就集成缓存(底层使用redis来实现)的形式
guava cache使用在更快的获取缓存数据,同时缓存的数据量并不大的情况
spring cache集成缓存是为了简单便捷的去使用缓存(以注解的方式即可),使用redis做其实现类是为了可以存更多的数据在机器上
redis缓存单独使用是为了弥补spring cache集成缓存的不灵活
就我个人而言,如果需要使用分布式缓存,那么首先redis是必选的,因为在实际开发中,我们会缓存各种各样的数据类型,在使用了redis的同时,memcached就完全可以舍弃了,但是现在还有很多公司在同时使用memcached和redis两种缓存。
‘伍’ EhCache 分布式缓存/缓存集群
一 缓存系统简介 EhCache 是一个纯 Java 的进程内缓存框架 具有快速 精干等特点 是 Hibernate 中默认的 CacheProvider 键源 EhCache 应用架构图 下图是 EhCache 在应用程序中的位置
EhCache 的主要特性有 快速 精干 简单 多种缓存策略 缓存数据有两级 内存和磁盘 因此无需担心容量问题 缓存数据会在虚稿亮态拟机重启的过程中写入磁盘 可以通过 RMI 可插入 API 等方式进行分布式缓存 具有缓存和缓存管理器的侦听接口 支持多缓存管理器实例 以及一个实例的多个缓存区域 提供 Hibernate 的缓存实现 由于 EhCache 是进程中的缓存系统 一旦将应用部署在集群环境中 每一个节点维护各自的缓存数据 当某个节点对缓存数据进行更新 这些更新的数据无法在其它节点 *** 享 这不仅会降低节点运行的效率 而且会导致数据不同步的情况发生 例如某个网站采用 A B 两个节点作为集群部署 当 A 节点的缓存更新后 而 B 节点缓存尚未更新就可能出现用户在浏览页面的时候 一会是更新后的数据 一会是尚未更新的数据 尽管我们也可以通过 Session Sticky 技术来将用户锁定在某个节点上 但对于一些交互性比较强或者是非 Web 方式的系统来说 Session Sticky 显然不太适合 所以就需要用到 EhCache 的集群解决方案 从 版本开始 Ehcache可以使用分布式的缓存了 EhCache 从 版本开始 支持五种集群方案 分别是 ? Terracotta ? RMI ? JMS ? JGroups ? EhCache Server 其中的三种最为常用集群方式 分别是 RMI JGroups 以及 EhCache Server 本文主要介绍RMI的方式 分布式这个特性是以plugin的方键歼式实现的 Ehcache自带了一些默认的分布式缓存插件实现 这些插件可以满足大部分应用的需要 如果需要使用其他的插件那就需要自己开发了 开发者可以通过查看distribution包里的源代码及JavaDoc来实现它 尽管不是必须的 在使用分布式缓存时理解一些ehcahce的设计思想也是有帮助的 这可以参看分布式缓存设计的页面 以下的部分将展示如何让分布式插件同ehcache一起工作 下面列出的是一些分布式缓存中比较重要的方面 ? 你如何知道集群环境中的其他缓存? ? 分布式传送的消息是什么形式? ? 什么情况需要进行复制?增加(Puts) 更新(Updates)或是失效(Expiries)? ? 采用什么方式进行复制?同步还是异步方式? 为了安装分布式缓存 你需要配置一个PeerProvider 一个CacheManagerPeerListener 它们对于一个CacheManager来说是全局的 每个进行分布式操作的cache都要添加一个cacheEventListener来传送消息
二 集群缓存概念及其配置 正确的元素类型 只有可序列化的元素可以进行复制 一些操作 比如移除 只需要元素的键值而不用整个元素 在这样的操作中即使元素不是可序列化的但键值是可序列化的也可以被复制 成员发现(Peer Discovery) Ehcache进行集群的时候有一个cache组的概念 每个cache都是其他cache的一个peer 没有主cache的存在 刚才我们问了一个问题 你如何知道集群环境中的其他缓存?这个问题可以命名为成员发现(Peer Discovery) Ehcache提供了两种机制用来进行成员发现 就像一辆汽车 手动档和自动档 要使用一个内置的成员发现机制要在ehcache的配置文件中指定元素的class属性为 net sf ehcache distribution 自动的成员发现 自动的发现方式用TCP广播机制来确定和维持一个广播组 它只需要一个简单的配置可以自动的在组中添加和移除成员 在集群中也不需要什么优化服务器的知识 这是默认推荐的 成员每秒向群组发送一个 心跳 如果一个成员 秒种都没有发出信号它将被群组移除 如果一个新的成员发送了一个 心跳 它将被添加进群组 任何一个用这个配置安装了复制功能的cache都将被其他的成员发现并标识为可用状态 要设置自动的成员发现 需要指定ehcache配置文件中元素的properties属性 就像下面这样 peerDiscovery=automatic multicastGroupAddress=multicast address | multicast host name multicastGroupPort=port timeToLive= (timeToLive属性详见常见问题部分的描述) 示例 假设你在集群中有两台服务器 你希望同步sampleCache 和sampleCache 每台独立的服务器都要有这样的配置 配置server 和server <class= net sf ehcache distribution properties= peerDiscovery=automatic multicastGroupAddress= />multicastGroupPort= timeToLive= 手动进行成员发现 进行手动成员配置要知道每个监听器的IP地址和端口 成员不能在运行时动态地添加和移除 在技术上很难使用广播的情况下就可以手动成员发现 例如在集群的服务器之间有一个不能传送广播报文的路由器 你也可以用手动成员发现进行单向的数据复制 只让server 知道server 而server 不知道server 配置手动成员发现 需要指定ehcache配置文件中的properties属性 像下面这样 peerDiscovery=manual rmiUrls=//server:port/cacheName //server:port/cacheName … rmiUrls配置的是服务器cache peers的列表 注意不要重复配置 示例 假设你在集群中有两台服务器 你要同步sampleCache 和sampleCache 下面是每个服务器需要的配置 配置server <class= net sf ehcache distribution properties= peerDiscovery=manual />rmiUrls=//server : /sampleCache |//server : /sampleCache 配置server <class= net sf ehcache distribution properties= peerDiscovery=manual />rmiUrls=//server : /sampleCache |//server : /sampleCache 配置CacheManagerPeerListener 每个CacheManagerPeerListener监听从成员们发向当前CacheManager的消息 配置CacheManagerPeerListener需要指定一个 它以插件的机制实现 用来创建CacheManagerPeerListener 的属性有 class – 一个完整的工厂类名 properties – 只对这个工厂有意义的属性 使用逗号分隔 Ehcache有一个内置的基于RMI的分布系统 它的监听器是RMICacheManagerPeerListener 这个监听器可以用 RMI来配置 <class= net sf ehcache distribution RMI properties= hostName=localhost port= />socketTimeoutMillis= 有效的属性是 hostname (可选) – 运行监听器的服务器名称 标明了做为集群群组的成员的地址 同时也是你想要控制的从集群中接收消息的接口在CacheManager初始化的时候会检查hostname是否可用 如果hostName不可用 CacheManager将拒绝启动并抛出一个连接被拒绝的异常 如果指定 hostname将使用InetAddress getLocalHost() getHostAddress()来得到 警告 不要将localhost配置为本地地址 因为它在网络中不可见将会导致不能从远程服务器接收信息从而不能复制 在同一台机器上有多个CacheManager的时候 你应该只用localhost来配置 port – 监听器监听的端口 socketTimeoutMillis (可选) – Socket超时的时间 默认是 ms 当你socket同步缓存请求地址比较远 不是本地局域网 你可能需要把这个时间配置大些 不然很可能延时导致同步缓存失败 配置CacheReplicators 每个要进行同步的cache都需要设置一个用来向CacheManagerr的成员复制消息的缓存事件监听器 这个工作要通过为每个cache的配置增加一个cacheEventListenerFactory元素来完成 <! Sample cache named sampleCache ><cache name= sampleCache maxElementsInMemory= eternal= false timeToIdleSeconds= timeToLiveSeconds= overflowToDisk= false ><cacheEventListenerFactory class= net sf ehcache distribution RMICacheReplicatorFactory properties= replicateAsynchronously=true replicatePuts=true replicateUpdates=true replicateUpdatesViaCopy=false replicateRemovals=true /></cache>class – 使用net sf ehcache distribution RMICacheReplicatorFactory 这个工厂支持以下属性 replicatePuts=true | false – 当一个新元素增加到缓存中的时候是否要复制到其他的peers 默认是true replicateUpdates=true | false – 当一个已经在缓存中存在的元素被覆盖时是否要进行复制 默认是true replicateRemovals= true | false – 当元素移除的时候是否进行复制 默认是true replicateAsynchronously=true | false – 复制方式是异步的(指定为true时)还是同步的(指定为false时) 默认是true replicatePutsViaCopy=true | false – 当一个新增元素被拷贝到其他的cache中时是否进行复制指定为true时为复制 默认是true replicateUpdatesViaCopy=true | false – 当一个元素被拷贝到其他的cache中时是否进行复制(指定为true时为复制) 默认是true 你可以使用ehcache的默认行为从而减少配置的工作量 默认的行为是以异步的方式复制每件事 你可以像下面的例子一样减少RMICacheReplicatorFactory的属性配置 <! Sample cache named sampleCache All missing RMICacheReplicatorFactory properties default to true ><cache name= sampleCache maxElementsInMemory= eternal= true overflowToDisk= false memoryStoreEvictionPolicy= LFU ><cacheEventListenerFactory class= net sf ehcache distribution RMICacheReplicatorFactory /></cache> 常见的问题 Windows上的Tomcat 有一个Tomcat或者是JDK的bug 在tomcat启动时如果tomcat的安装路径中有空格的话 在启动时RMI监听器会失败 参见 bin/wa?A =ind &L=rmi users&P= 和 doc/faq howto bugs/l 由于在Windows上安装Tomcat默认是装在 Program Files 文件夹里的 所以这个问题经常发生 广播阻断 自动的peer discovery与广播息息相关 广播可能被路由阻拦 像Xen和VMWare这种虚拟化的技术也可以阻拦广播 如果这些都打开了 你可能还在要将你的网卡的相关配置打开 一个简单的办法可以告诉广播是否有效 那就是使用ehcache remote debugger来看 心跳 是否可用 广播传播的不够远或是传得太远 你可以通过设置badly misnamed time to live来控制广播传播的距离 用广播IP协议时 timeToLive的值指的是数据包可以传递的域或是范围 约定如下 是限制在同一个服务器 是限制在同一个子网 是限制在同一个网站 是限制在同一个region 是限制在同一个大洲 是不限制 译者按 上面这些资料翻译的不够准确 请读者自行寻找原文理解吧 在Java实现中默认值是 也就是在同一个子网中传播 改变timeToLive属性可以限制或是扩展传播的范围
三 RMI方式缓存集群/配置分布式缓存 RMI 是 Java 的一种远程方法调用技术 是一种点对点的基于 Java 对象的通讯方式 EhCache 从 版本开始就支持 RMI 方式的缓存集群 在集群环境中 EhCache 所有缓存对象的键和值都必须是可序列化的 也就是必须实现 java io Serializable 接口 这点在其它集群方式下也是需要遵守的 下图是 RMI 集群模式的结构图
采用 RMI 集群模式时 集群中的每个节点都是对等关系 并不存在主节点或者从节点的概念 因此节点间必须有一个机制能够互相认识对方 必须知道其它节点的信息 包括主机地址 端口号等 EhCache 提供两种节点的发现方式 手工配置和自动发现 手工配置方式要求在每个节点中配置其它所有节点的连接信息 一旦集群中的节点发生变化时 需要对缓存进行重新配置 由于 RMI 是 Java 中内置支持的技术 因此使用 RMI 集群模式时 无需引入其它的 Jar 包 EhCache 本身就带有支持 RMI 集群的功能 使用 RMI 集群模式需要在 ehcache xml 配置文件中定义 节点 分布式同步缓存要让这边的cache知道对方的cache 叫做Peer Discovery(成员发现) EHCache实现成员发现的方式有两种 手动查找 A 在ehcache xml中配置PeerDiscovery成员发现对象 Server 配置 配置本地hostName port是 分别监听 : 的mobileCache和 : 的mobileCache 注意这里的mobileCache是缓存的名称 分别对应着server server 的cache的配置 <?xml version= encoding= gbk ?><ehcache xmlns:xsi= instance xsi:noNamespaceSchemaLocation= ehcache xsd > <diskStore path= java io tmpdir /> <! 集群多台服务器中的缓存 这里是要同步一些服务器的缓存 server hostName: port: cacheName:mobileCache server hostName: port: cacheName:mobileCache server hostName: port: cacheName:mobileCache 注意 每台要同步缓存的服务器的RMI通信socket端口都不一样 在配置的时候注意设置 > <! server 的配置 > < class= net sf ehcache distribution properties= hostName=localhost port= socketTimeoutMillis= peerDiscovery=manual rmiUrls=// : /mobileCache|// : /mobileCache /></ehcache>以上注意元素出现的位置在diskStore下
同样在你的另外 台服务器上增加配置 Server 配置本地host port为 分别同步 : 的mobileCache和 : 的mobileCache <! server 的配置 >< class= net sf ehcache distribution properties= hostName=localhost port= socketTimeoutMillis= peerDiscovery=manual rmiUrls=// : /mobileCache|// : /mobileCache />Server 配置本地host port为 分别同步 : 的mobileCache缓存和 : 的mobileCache缓存 <! server 的配置 >< class= net sf ehcache distribution properties= hostName=localhost port= socketTimeoutMillis= peerDiscovery=manual rmiUrls=// : /mobileCache|// : /mobileCache />这样就在三台不同的服务器上配置了手动查找cache的PeerProvider成员发现的配置了 值得注意的是你在配置rmiUrls的时候要特别注意url不能重复出现 并且端口 地址都是对的 如果指定 hostname将使用InetAddress getLocalHost() getHostAddress()来得到 警告 不要将localhost配置为本地地址 因为它在网络中不可见将会导致不能从远程服务器接收信息从而不能复制 在同一台机器上有多个CacheManager的时候 你应该只用localhost来配置 B 下面配置缓存和缓存同步监听 需要在每台服务器中的ehcache xml文件中增加cache配置和cacheEventListenerFactory cacheLoaderFactory的配置 <defaultCache maxElementsInMemory= eternal= false timeToIdleSeconds= timeToLiveSeconds= overflowToDisk= false /><! 配置自定义缓存 maxElementsInMemory:缓存中允许创建的最大对象数 eternal:缓存中对象是否为永久的 如果是 超时设置将被忽略 对象从不过期 timeToIdleSeconds:缓存数据空闲的最大时间 也就是说如果有一个缓存有多久没有被访问就会被销毁 如果该值是 就意味着元素可以停顿无穷长的时间 timeToLiveSeconds:缓存数据存活的时间 缓存对象最大的的存活时间 超过这个时间就会被销毁 这只能在元素不是永久驻留时有效 如果该值是 就意味着元素可以停顿无穷长的时间 overflowToDisk:内存不足时 是否启用磁盘缓存 memoryStoreEvictionPolicy:缓存满了之后的淘汰算法 每一个小时更新一次缓存( 小时过期) ><cache name= mobileCache maxElementsInMemory= eternal= false overflowToDisk= true timeToIdleSeconds= timeToLiveSeconds= memoryStoreEvictionPolicy= LFU > <! RMI缓存分布同步查找 class使用net sf ehcache distribution RMICacheReplicatorFactory 这个工厂支持以下属性 replicatePuts=true | false – 当一个新元素增加到缓存中的时候是否要复制到其他的peers 默认是true replicateUpdates=true | false – 当一个已经在缓存中存在的元素被覆盖时是否要进行复制 默认是true replicateRemovals= true | false – 当元素移除的时候是否进行复制 默认是true replicateAsynchronously=true | false – 复制方式是异步的 指定为true时 还是同步的 指定为false时 默认是true replicatePutsViaCopy=true | false – 当一个新增元素被拷贝到其他的cache中时是否进行复制 指定为true时为复制 默认是true replicateUpdatesViaCopy=true | false – 当一个元素被拷贝到其他的cache中时是否进行复制 指定为true时为复制 默认是true = > <! 监听RMI同步缓存对象配置 注册相应的的缓存监听类 用于处理缓存事件 如put remove update 和expire > <cacheEventListenerFactory class= net sf ehcache distribution RMICacheReplicatorFactory properties= replicateAsynchronously=true /> replicatePuts=true replicateUpdates=true replicateUpdatesViaCopy=false replicateRemovals=true <! 用于在初始化缓存 以及自动设置 > <bootstrapCacheLoaderFactory class= net sf ehcache bootstrap BootstrapCacheLoaderFactory /></cache> C 这样就完成了 台服务器的配置 下面给出server 的完整的ehcache xml的配置 <?xml version= encoding= gbk ?><ehcache xmlns:xsi= instance xsi:noNamespaceSchemaLocation= ehcache xsd > <diskStore path= java io tmpdir /> <!集群多台服务器中的缓存 这里是要同步一些服务器的缓存 server hostName: port: cacheName:mobileCache server hostName: port: cacheName:mobileCache server hostName: port: cacheName:mobileCache 注意每台要同步缓存的服务器的RMI通信socket端口都不一样 在配置的时候注意设置 > <! server 的配置 > < class= net sf ehcache distribution properties= hostName=localhost port= socketTimeoutMillis= peerDiscovery=manual rmiUrls=// : /mobileCache|// : /mobileCache /> <defaultCache maxElementsInMemory= eternal= false timeToIdleSeconds= timeToLiveSeconds= overflowToDisk= false /> <! 配置自定义缓存 maxElementsInMemory:缓存中允许创建的最大对象数 eternal:缓存中对象是否为永久的 如果是 超时设置将被忽略 对象从不过期 timeToIdleSeconds:缓存数据空闲的最大时间 也就是说如果有一个缓存有多久没有被访问就会被销毁 如果该值是 就意味着元素可以停顿无穷长的时间 timeToLiveSeconds:缓存数据存活的时间 缓存对象最大的的存活时间 超过这个时间就会被销毁 这只能在元素不是永久驻留时有效 如果该值是 就意味着元素可以停顿无穷长的时间 overflowToDisk:内存不足时 是否启用磁盘缓存 memoryStoreEvictionPolicy:缓存满了之后的淘汰算法 每一个小时更新一次缓存( 小时过期) > <cache name= mobileCache maxElementsInMemory= eternal= false overflowToDisk= true timeToIdleSeconds= timeToLiveSeconds= memoryStoreEvictionPolicy= LFU > <! RMI缓存分布同步查找 class使用net sf ehcache distribution RMICacheReplicatorFactory 这个工厂支持以下属性 replicatePuts=true | false – 当一个新元素增加到缓存中的时候是否要复制到其他的peers 默认是true replicateUpdates=true | false – 当一个已经在缓存中存在的元素被覆盖时是否要进行复制 默认是true replicateRemovals= true | false – 当元素移除的时候是否进行复制 默认是true replicateAsynchronously=true | false – 复制方式是异步的 指定为true时 还是同步的 指定为false时 默认是true replicatePutsViaCopy=true | false – 当一个新增元素被拷贝到其他的cache中时是否进行复制 指定为true时为复制 默认是true replicateUpdatesViaCopy=true | false – 当一个元素被拷贝到其他的cache中时是否进行复制 指定为true时为复制 默认是true = > <! 监听RMI同步缓存对象配置 注册相应的的缓存监听类 用于处理缓存事件 如put remove update 和expire > <cacheEventListenerFactory class= net sf ehcache distribution RMICacheReplicatorFactory properties= replicateAsynchronously=true /> replicatePuts=true replicateUpdates=true replicateUpdatesViaCopy=false replicateRemovals=true <! 用于在初始化缓存 以及自动设置 > <bootstrapCacheLoaderFactory class= net sf ehcache bootstrap BootstrapCacheLoaderFactory /> </cache></ehcache> 自动发现 自动发现配置和手动查找的方式有一点不同 其他的地方都基本是一样的 同样在ehcache xml中增加配置 配置如下 <! 搜索某个网段上的缓存timeToLive 是限制在同一个服务器 是限制在同一个子网 是限制在同一个网站 是限制在同一个region 是限制在同一个大洲 是不限制 >< class= net sf ehcache distribution properties= peerDiscovery=automatic multicastGroupAddress= multicastGroupPort= timeToLive= /> lishixin/Article/program/Java/hx/201311/25706
‘陆’ Java本地缓存有哪些
下面给你介绍几个常见的java缓存框架:
1、OSCache
OSCache是个一个广泛采用的高性能的J2EE缓存框架,OSCache能用于任何Java应用程序的普通的缓存解决方案。
OSCache有以下特点:
缓存任何对象,你可以不受限制的缓存部分jsp页面或HTTP请求,任何java对象都可以缓存。
拥有全面的API--OSCache API给你全面的程序来控制所有的OSCache特性。
永久缓存--缓存能随意的写入硬盘,因此允许昂贵的创建(expensive-to-create)数据来保持缓存,甚至能让应用重启。
支持集群--集群缓存数据能被单个的进行参数配置,不需要修改代码。
缓存记录的过期--你可以有最大限度的控制缓存对象的过期,包括可插入式的刷新策略(如果默认性能不需要时)。
2、Java Caching System
JSC(Java Caching System)是一个用分布式的缓存系统,是基于服务器的java应用程序。它是通过提供管理各种动态缓存数据来加速动态web应用。
JCS和其他缓存系统一样,也是一个用于高速读取,低速写入的应用程序。
动态内容和报表系统能够获得更好的性能。
如果一个网站,有重复的网站结构,使用间歇性更新方式的数据库(而不是连续不断的更新数据库),被重复搜索出相同结果的,就能够通过执行缓存方式改进其性能和伸缩性。
3、EHCache
EHCache 是一个纯java的在进程中的缓存,它具有以下特性:快速,简单,为Hibernate2.1充当可插入的缓存,最小的依赖性,全面的文档和测试。
4、JCache
JCache是个开源程序,正在努力成为JSR-107开源规范,JSR-107规范已经很多年没改变了。这个版本仍然是构建在最初的功能定义上。
5、ShiftOne
ShiftOne Java Object Cache是一个执行一系列严格的对象缓存策略的Java lib,就像一个轻量级的配置缓存工作状态的框架。
6、SwarmCache
SwarmCache是一个简单且有效的分布式缓存,它使用IP multicast与同一个局域网的其他主机进行通讯,是特别为集群和数据驱动web应用程序而设计的。SwarmCache能够让典型的读操作大大超过写操作的这类应用提供更好的性能支持。
SwarmCache使用JavaGroups来管理从属关系和分布式缓存的通讯。
‘柒’ hibernate缓存的详细配置
很多人对二级缓存都不太了解,或者是有错误的认识,我一直想写一篇文章介绍一下hibernate的二级缓存的,今天终于忍不住了。
我的经验主要来自hibernate2.1版本,基本原理和3.0、3.1是一样的,请原谅我的顽固不化。
hibernate的session提供了一级缓存,每个session,对同一个id进行两次load,不会发送两条sql给数据库,但是session关闭的时候,一级缓存就失效了。
二级缓存是SessionFactory级别的全局缓存,它底下可以使用不同的缓存类库,比如ehcache、oscache等,需要设置hibernate.cache.provider_class,我们这里用ehcache,在2.1中就是
hibernate.cache.provider_class=net.sf.hibernate.cache.EhCacheProvider
如果使用查询缓存,加上
hibernate.cache.use_query_cache=true
缓存可以简单的看成一个Map,通过key在缓存里面找value。
Class的缓存
对于一条记录,也就是一个PO来说,是根据ID来找的,缓存的key就是ID,value是POJO。无论list,load还是iterate,只要读出一个对象,都会填充缓存。但是list不会使用缓存,而iterate会先取数据库select id出来,然后一个id一个id的load,如果在缓存里面有,就从缓存取,没有的话就去数据库load。假设是读写缓存,需要设置:
<cache usage="read-write"/>
如果你使用的二级缓存实现是ehcache的话,需要配置ehcache.xml
<cache name="com.xxx.pojo.Foo" maxElementsInMemory="500" eternal="false" timeToLiveSeconds="7200" timeToIdleSeconds="3600" overflowToDisk="true" />
其中eternal表示缓存是不是永远不超时,timeToLiveSeconds是缓存中每个元素(这里也就是一个POJO)的超时时间,如果eternal="false",超过指定的时间,这个元素就被移走了。timeToIdleSeconds是发呆时间,是可选的。当往缓存里面put的元素超过500个时,如果overflowToDisk="true",就会把缓存中的部分数据保存在硬盘上的临时文件里面。
每个需要缓存的class都要这样配置。如果你没有配置,hibernate会在启动的时候警告你,然后使用defaultCache的配置,这样多个class会共享一个配置。
当某个ID通过hibernate修改时,hibernate会知道,于是移除缓存。
这样大家可能会想,同样的查询条件,第一次先list,第二次再iterate,就可以使用到缓存了。实际上这是很难的,因为你无法判断什么时候是第一次,而且每次查询的条件通常是不一样的,假如数据库里面有100条记录,id从1到100,第一次list的时候出了前50个id,第二次iterate的时候却查询到30至70号id,那么30-50是从缓存里面取的,51到70是从数据库取的,共发送1+20条sql。所以我一直认为iterate没有什么用,总是会有1+N的问题。
(题外话:有说法说大型查询用list会把整个结果集装入内存,很慢,而iterate只select id比较好,但是大型查询总是要分页查的,谁也不会真的把整个结果集装进来,假如一页20条的话,iterate共需要执行21条语句,list虽然选择若干字段,比iterate第一条select id语句慢一些,但只有一条语句,不装入整个结果集hibernate还会根据数据库方言做优化,比如使用mysql的limit,整体看来应该还是list快。)
如果想要对list或者iterate查询的结果缓存,就要用到查询缓存了
查询缓存
首先需要配置hibernate.cache.use_query_cache=true
如果用ehcache,配置ehcache.xml,注意hibernate3.0以后不是net.sf的包名了
<cache name="net.sf.hibernate.cache.StandardQueryCache"
maxElementsInMemory="50" eternal="false" timeToIdleSeconds="3600"
timeToLiveSeconds="7200" overflowToDisk="true"/>
<cache name="net.sf.hibernate.cache.UpdateTimestampsCache"
maxElementsInMemory="5000" eternal="true" overflowToDisk="true"/>
然后
query.setCacheable(true);//激活查询缓存
query.setCacheRegion("myCacheRegion");//指定要使用的cacheRegion,可选
第二行指定要使用的cacheRegion是myCacheRegion,即你可以给每个查询缓存做一个单独的配置,使用setCacheRegion来做这个指定,需要在ehcache.xml里面配置它:
<cache name="myCacheRegion" maxElementsInMemory="10" eternal="false" timeToIdleSeconds="3600" timeToLiveSeconds="7200" overflowToDisk="true" />
如果省略第二行,不设置cacheRegion的话,那么会使用上面提到的标准查询缓存的配置,也就是net.sf.hibernate.cache.StandardQueryCache
对于查询缓存来说,缓存的key是根据hql生成的sql,再加上参数,分页等信息(可以通过日志输出看到,不过它的输出不是很可读,最好改一下它的代码)。
比如hql:
from Cat c where c.name like ?
生成大致如下的sql:
select * from cat c where c.name like ?
参数是"tiger%",那么查询缓存的key*大约*是这样的字符串(我是凭记忆写的,并不精确,不过看了也该明白了):
select * from cat c where c.name like ? , parameter:tiger%
这样,保证了同样的查询、同样的参数等条件下具有一样的key。
现在说说缓存的value,如果是list方式的话,value在这里并不是整个结果集,而是查询出来的这一串ID。也就是说,不管是list方法还是iterate方法,第一次查询的时候,它们的查询方式很它们平时的方式是一样的,list执行一条sql,iterate执行1+N条,多出来的行为是它们填充了缓存。但是到同样条件第二次查询的时候,就都和iterate的行为一样了,根据缓存的key去缓存里面查到了value,value是一串id,然后在到class的缓存里面去一个一个的load出来。这样做是为了节约内存。
可以看出来,查询缓存需要打开相关类的class缓存。list和iterate方法第一次执行的时候,都是既填充查询缓存又填充class缓存的。
这里还有一个很容易被忽视的重要问题,即打开查询缓存以后,即使是list方法也可能遇到1+N的问题!相同条件第一次list的时候,因为查询缓存中找不到,不管class缓存是否存在数据,总是发送一条sql语句到数据库获取全部数据,然后填充查询缓存和class缓存。但是第二次执行的时候,问题就来了,如果你的class缓存的超时时间比较短,现在class缓存都超时了,但是查询缓存还在,那么list方法在获取id串以后,将会一个一个去数据库load!因此,class缓存的超时时间一定不能短于查询缓存设置的超时时间!如果还设置了发呆时间的话,保证class缓存的发呆时间也大于查询的缓存的生存时间。这里还有其他情况,比如class缓存被程序强制evict了,这种情况就请自己注意了。
另外,如果hql查询包含select字句,那么查询缓存里面的value就是整个结果集了。
当hibernate更新数据库的时候,它怎么知道更新哪些查询缓存呢?
hibernate在一个地方维护每个表的最后更新时间,其实也就是放在上面net.sf.hibernate.cache.UpdateTimestampsCache所指定的缓存配置里面。
当通过hibernate更新的时候,hibernate会知道这次更新影响了哪些表。然后它更新这些表的最后更新时间。每个缓存都有一个生成时间和这个缓存所查询的表,当hibernate查询一个缓存是否存在的时候,如果缓存存在,它还要取出缓存的生成时间和这个缓存所查询的表,然后去查找这些表的最后更新时间,如果有一个表在生成时间后更新过了,那么这个缓存是无效的。
可以看出,只要更新过一个表,那么凡是涉及到这个表的查询缓存就失效了,因此查询缓存的命中率可能会比较低。
Collection缓存
需要在hbm的collection里面设置
<cache usage="read-write"/>
假如class是Cat,collection叫children,那么ehcache里面配置
<cache name="com.xxx.pojo.Cat.children"
maxElementsInMemory="20" eternal="false" timeToIdleSeconds="3600" timeToLiveSeconds="7200"
overflowToDisk="true" />
Collection的缓存和前面查询缓存的list一样,也是只保持一串id,但它不会因为这个表更新过就失效,一个collection缓存仅在这个collection里面的元素有增删时才失效。
这样有一个问题,如果你的collection是根据某个字段排序的,当其中一个元素更新了该字段时,导致顺序改变时,collection缓存里面的顺序没有做更新。
缓存策略
只读缓存(read-only):没有什么好说的
读/写缓存(read-write):程序可能要的更新数据
不严格的读/写缓存(nonstrict-read-write):需要更新数据,但是两个事务更新同一条记录的可能性很小,性能比读写缓存好
事务缓存(transactional):缓存支持事务,发生异常的时候,缓存也能够回滚,只支持jta环境,这个我没有怎么研究过
读写缓存和不严格读写缓存在实现上的区别在于,读写缓存更新缓存的时候会把缓存里面的数据换成一个锁,其他事务如果去取相应的缓存数据,发现被锁住了,然后就直接取数据库查询。
在hibernate2.1的ehcache实现中,如果锁住部分缓存的事务发生了异常,那么缓存会一直被锁住,直到60秒后超时。
不严格读写缓存不锁定缓存中的数据。
使用二级缓存的前置条件
你的hibernate程序对数据库有独占的写访问权,其他的进程更新了数据库,hibernate是不可能知道的。你操作数据库必需直接通过hibernate,如果你调用存储过程,或者自己使用jdbc更新数据库,hibernate也是不知道的。hibernate3.0的大批量更新和删除是不更新二级缓存的,但是据说3.1已经解决了这个问题。
这个限制相当的棘手,有时候hibernate做批量更新、删除很慢,但是你却不能自己写jdbc来优化,很郁闷吧。
SessionFactory也提供了移除缓存的方法,你一定要自己写一些JDBC的话,可以调用这些方法移除缓存,这些方法是:
void evict(Class persistentClass)
Evict all entries from the second-level cache.
void evict(Class persistentClass, Serializable id)
Evict an entry from the second-level cache.
void evictCollection(String roleName)
Evict all entries from the second-level cache.
void evictCollection(String roleName, Serializable id)
Evict an entry from the second-level cache.
void evictQueries()
Evict any query result sets cached in the default query cache region.
void evictQueries(String cacheRegion)
Evict any query result sets cached in the named query cache region.
不过我不建议这样做,因为这样很难维护。比如你现在用JDBC批量更新了某个表,有3个查询缓存会用到这个表,用evictQueries(String cacheRegion)移除了3个查询缓存,然后用evict(Class persistentClass)移除了class缓存,看上去好像完整了。不过哪天你添加了一个相关查询缓存,可能会忘记更新这里的移除代码。如果你的jdbc代码到处都是,在你添加一个查询缓存的时候,还知道其他什么地方也要做相应的改动吗?
----------------------------------------------------
总结:
不要想当然的以为缓存一定能提高性能,仅仅在你能够驾驭它并且条件合适的情况下才是这样的。hibernate的二级缓存限制还是比较多的,不方便用jdbc可能会大大的降低更新性能。在不了解原理的情况下乱用,可能会有1+N的问题。不当的使用还可能导致读出脏数据。
如果受不了hibernate的诸多限制,那么还是自己在应用程序的层面上做缓存吧。
在越高的层面上做缓存,效果就会越好。就好像尽管磁盘有缓存,数据库还是要实现自己的缓存,尽管数据库有缓存,咱们的应用程序还是要做缓存。因为底层的缓存它并不知道高层要用这些数据干什么,只能做的比较通用,而高层可以有针对性的实现缓存,所以在更高的级别上做缓存,效果也要好些吧。