分布式缓存redisjava
1. 如何用java redis hbase
比如 MongoDB 和 CouchDB。每个数据存储都有其优势和劣势,特别是当应用于特定领域时。 本期的 Java 开发 2.0 关注的是 Redis,一种轻量级键值对数据存储。多数 NoSQL 实现本质上都是键值对,但是 Redis 支持非常丰富的值集,其中包括字符串、列表、集以及散列。因此,Redis 通常被称为数据结构服务器。Redis 也以异常快速而闻名,这使得它成为某一特定类型使用案例的最优选择。 当我们想要了解一种新事物时,将其同熟知的事物进行比较可能会有所帮助,因此,我们将通过对比其与 memcached 的相似性以开启 Redis 探索之旅。接着我们将介绍 Redis 的主要功能,这些功能可以使其在某些应用场景可以胜过 memcached。最后我将向您展示如何将 Redis 作为一个传统数据存储用于模型对象。Redis 和 memcached Memcached 是一个众所周知的内存对象缓存系统,通过将目标键和值导入内存缓存运行。因此,Memcached 能回避读取磁盘时发生的 I/O 成本问题。在 Web 应用程序和数据库之间粘贴 memcached 时会产生更好的读取性能。因此,对于那些需要快速数据查询的应用程序,Memcached 是一个不错的选择。其中的一个例子为股票查询服务,需要另外访问数据库获取相对静态数据,如股票名称或价格信息。 MemcacheDB 将Redis 与 memcached 相比较并不公平,它与 MemcacheDB 相比要好的多,MemcacheDB 是一个分布式键值对存储系统,专为数据持久化而设计。MemcacheDB 与 Redis 较为相似,其新增优势可以使其轻松地与 memcached 实现的客户端进行通信。 但是memcached 也有其局限性,其中一个事实就是它所有的值均是简单的字符串。Redis 作为 memcached 的替代者,支持更加丰富的功能集。一些基准 (benchmarks) 也表明 Redis 的速度要比 memcached 快很多。Redis 提供的丰富数据类型使其可以在内存中存储更为复杂的数据,这是使用 memcached 无法实现的。同 memcached 不一样,Redis 可以持久化其数据。 Redis 解决了一个重大的缓存问题,而其丰富的功能集又为其找到了其他用途。由于 Redis 能够在磁盘上存储数据以及跨节点复制数据,因而可以作为数据仓库用于传统数据模式(也就是说,您可以使用 Redis,就像使用 RDBMS 一样)。Redis 还经常被用作队列系统。在本用例中,Redis 是备份和工作队列持久化存储(利用 Redis 的列表类型)的基础。GitHub 是以此种方法使用 Redis 的大规模基础架构示例准备好 Redis,立即开始! 要开始使用 Redis,您需要访问它,可以通过本地安装或者托管供应商来实现访问。如果您使用的 MAC,安装过程可能就不那么简单。
2. java有哪些简洁的ORM框架
java简洁的ROM框架太多了,并且每天都在更新迭代,从一下几方面总结。
1、整合数据库的orm框架:Mybatis(batis)、Hibernate、Jpa、Jdo等。
2、缓存以及分布式缓存:Ecache、Memcached、Redis等。
3、web框架:WebWok、Struts2、SpringMvc等。
4、远程调用的相关的服务框架:bbo、webService等。
4、其他大大小小,在各领域发挥的有很多,如日志处理Log4J、sj4j,xml处理dom4j等等数不胜数。
3. Redis分布式缓存搭建
花了两天时间整理了之前记录的Redis单体与哨兵模式的搭建与使用,又补齐了集群模式的使用和搭建经验,并对集群的一些个原理做了理解。
笔者安装中遇到的一些问题:
如果make报错,可能是没装gcc或者gcc++编辑器,安装之 yum -y install gcc gcc-c++ kernel-devel ,有可能还是提示一些个c文件编译不过,gcc -v查看下版本,如果不到5.3那么升级一下gcc:
在 /etc/profile 追加一行 source /opt/rh/devtoolset-9/enable
scl enable devtoolset-9 bash
重新make clean, make
这回编译通过了,提示让你最好make test一下/
执行make test ,如果提示 You need tcl 8.5 or newer in order to run the Redis test
那就升级tcl, yum install tcl
重新make test,如果还有error就删了目录,重新tar包解压重新make , make test
o/ All tests passed without errors! ,表示编译成功。
然后make install即可。
直接运行命令: ./redis-server /usr/redis-6.0.3/redis.conf &
redis.conf 配置文件里 bind 0.0.0.0 设置外部访问, requirepass xxxx 设置密码。
redis高可用方案有两种:
常用搭建方案为1主1从或1主2从+3哨兵监控主节点, 以及3主3从6节点集群。
(1)sentinel哨兵
/usr/redis-6.0.3/src/redis-sentinel /usr/redis-6.0.3/sentinel2.conf &
sentinel2.conf配置:
坑1:master节点也会在故障转移后成为从节点,也需要配置masterauth
当kill master进程之后,经过sentinel选举,slave成为了新的master,再次启动原master,提示如下错误:
原因是此时的master再次启动已经是slave了,需要向现在的新master输入密码,所以需要在master.conf
中配置:
坑2:哨兵配置文件要暴露客户端可以访问到的master地址
在 sentinel.conf 配置文件的 sentinel monitor mymaster 122.xx.xxx.xxx 6379 2 中,配置该哨兵对应的master名字、master地址和端口,以及达到多少个哨兵选举通过认为master挂掉。其中master地址要站在redis访问者(也就是客户端)的角度、配置访问者能访问的地址,例如sentinel与master在一台服务器(122.xx.xxx.xxx)上,那么相对sentinel其master在本机也就是127.0.0.1上,这样 sentinel monitor mymaster 127.0.0.1 6379 2 逻辑上没有问题,但是如果另外服务器上的springboot通过lettuce访问这个redis哨兵,则得到的master地址为127.0.0.1,也就是springboot所在服务器本机,这显然就有问题了。
附springboot2.1 redis哨兵配置:
坑3:要注意配置文件.conf会被哨兵修改
redis-cli -h localhost -p 26379 ,可以登到sentinel上用info命令查看一下哨兵的信息。
曾经遇到过这样一个问题,大致的信息如下
slaves莫名其妙多了一个,master的地址也明明改了真实对外的地址,这里又变成127.0.0.1 !
最后,把5个redis进程都停掉,逐个检查配置文件,发现redis的配置文件在主从哨兵模式会被修改,master的配置文件最后边莫名其妙多了一行replicaof 127.0.0.1 7001, 怀疑应该是之前配置错误的时候(见坑2)被哨兵动态加上去的! 总之,实践中一定要多注意配置文件的变化。
(2)集群
当数据量大到一定程度,比如几十上百G,哨兵模式不够用了需要做水平拆分,早些年是使用codis,twemproxy这些第三方中间件来做分片的,即 客户端 -> 中间件 -> Redis server 这样的模式,中间件使用一致性Hash算法来确定key在哪个分片上。后来Redis官方提供了方案,大家就都采用官方的Redis Cluster方案了。
Redis Cluster从逻辑上分16384个hash slot,分片算法是 CRC16(key) mod 16384 得到key应该对应哪个slot,据此判断这个slot属于哪个节点。
每个节点可以设置1或多个从节点,常用的是3主节点3从节点的方案。
reshard,重新分片,可以指定从哪几个节点移动一些hash槽到另一个节点去。重新分片的过程对客户端透明,不影响线上业务。
搭建Redis cluster
redis.conf文件关键的几个配置:
启动6个集群节点
[root@VM_0_11_centos redis-6.0.3]# ps -ef|grep redis
root 5508 1 0 21:25 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7001 [cluster]
root 6903 1 0 21:32 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7002 [cluster]
root 6939 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7003 [cluster]
root 6966 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7004 [cluster]
root 6993 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7005 [cluster]
root 7015 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7006 [cluster]
这时候这6个节点还是独立的,要把他们配置成集群:
说明: -a xxxx 是因为笔者在redis.conf中配置了requirepass xxxx密码,然后 --cluster-replicas 1 中的1表示每个master节点有1个从节点。
上述命令执行完以后会有一个询问: Can I set the above configuration? yes同意自动做好的分片即可。
最后 All 16384 slots covered. 表示集群中16384个slot中的每一个都有至少有1个master节点在处理,集群启动成功。
查看集群状态:
坑1:暴露给客户端的节点地址不对
使用lettuce连接发现连不上,查看日志 Connection refused: no further information: /127.0.0.1:7002 ,跟之前哨兵配置文件sentinel.conf里边配置master地址犯的错误一样,集群启动的时候带的地址应该是提供给客户端访问的地址。
我们要重建集群:先把6个redis进程停掉,然后删除 nodes-7001.conf 这些节点配置文件,删除持久化文件 mp.rdb 、 appendonly.aof ,重新启动6个进程,在重新建立集群:
然后,还是连不上,这次报错 connection timed out: /172.xx.0.xx:7004 ,发现连到企鹅云服务器的内网地址上了!
解决办法,修改每个节点的redis.conf配置文件,找到如下说明:
所以增加配置:
然后再重新构建集群,停进程、改配置、删除节点文件和持久化文件、启动进程、配置集群。。。再来一套(累死了)
重新使用Lettuce测试,这次终于连上了!
坑2:Lettuce客户端在master节点故障时没有自动切换到从节点
name这个key在7002上,kill这个进程模拟master下线,然后Lettuce一直重连。我们期望的是应该能自动切换到其slave 7006上去,如下图:
重新启动7002进程,
7006已成为新master,7002成为它的slave,然后Lettuce也能连接上了。
解决办法,修改Lettuce的配置:
笔者用的是springboot 2.1 spring-boot-starter-data-redis 默认的Lettuce客户端,当使用Redis cluster集群模式时,需要配置一下 RedisConnectionFactory 开启自适应刷新来做故障转移时的自动切换从节点进行连接。
重新测试:停掉master 7006,这次Lettuce可以正常切换连到7002slave上去了。(仍然会不断的在日志里报连接错误,因为需要一直尝试重连7006,但因为有7002从节点顶上了、所以应用是可以正常使用的)
Redis不保证数据的强一致性
Redis并不保证数据的强一致性,也就是取CAP定理中的AP
关于一致性Hash算法,可以参考 一致性Hash算法 - (jianshu.com)
Redis cluster使用的是hash slot算法,跟一致性Hash算法不太一样,固定16384个hash槽,然后计算key落在哪个slot里边(计算key的CRC16值再对16384取模),key找的是slot而不是节点,而slot与节点的对应关系可以通过reshard改变并通过gossip协议扩散到集群中的每一个节点、进而可以为客户端获知,这样key的节点寻址就跟具体的节点个数没关系了。也同样解决了普通hash取模算法当节点个数发生变化时,大量key对应的寻址都发生改动导致缓存失效的问题。
比如集群增加了1个节点,这时候如果不做任何操作,那么新增加的这个节点上是没有slot的,所有slot都在原来的节点上且对应关系不变、所以没有因为节点个数变动而缓存失效,当reshard一部分slot到新节点后,客户端获取到新迁移的这部分slot与新节点的对应关系、寻址到新节点,而没迁移的slot仍然寻址到原来的节点。
关于热迁移,猜想,内部应该是先做复制迁移,等迁移完了,再切换slot与节点的对应关系,复制没有完成之前仍按照原来的slot与节点对应关系去原节点访问。复制结束之后,再删除原节点上已经迁移的slot所对应的key。
与哨兵模式比较类似,当1个节点发现某个master节点故障了、会对这个故障节点进行pfail主观宕机,然后会通过gossip协议通知到集群中的其他节点、其他节点也执行判断pfail并gossip扩散广播这一过程,当超过半数节点pfail时那么故障节点就是fail客观宕机。接下来所有的master节点会在故障节点的从节点中选出一个新的主节点,此时所有的master节点中超过半数的都投票选举了故障节点的某个从节点,那么这个从节点当选新的master节点。
所有节点都持有元数据,节点之间通过gossip这种二进制协议进行通信、发送自己的元数据信息给其他节点、故障检测、集群配置更新、故障转移授权等等。
这种去中心化的分布式节点之间内部协调,包括故障识别、故障转移、选主等等,核心在于gossip扩散协议,能够支撑这样的广播协议在于所有的节点都持有一份完整的集群元数据,即所有的节点都知悉当前集群全局的情况。
Redis高可用方案 - (jianshu.com)
面试题:Redis 集群模式的工作原理能说一下么 - 云+社区 - 腾讯云 (tencent.com)
深度图解Redis Cluster原理 - detectiveHLH - 博客园 (cnblogs.com)
Redis学习笔记之集群重启和遇到的坑-阿里云开发者社区 (aliyun.com)
云服务器Redis集群部署及客户端通过公网IP连接问题
4. java web开发缓存方案,ehcache和redis哪个更好
Ehcache
在java项目广泛的陆塌使用。它是一个开源的、设计于提高在数据从RDBMS中取出来的高花费、高延迟采取的一种缓存方案。正因为Ehcache具有健壮性(基于java开发)、被认证(具有apache 2.0 license)、充满特色(稍后会详细介绍),所以被用于大型复杂分布式web application的各个节点中。
1. 够快
Ehcache的发行有一段时长了,经过几年的努力和不计其数的性能测试盯竖,Ehcache终被设计于large, high concurrency systems.
2. 够简单
开发者提供的接口非常简单明了,从Ehcache的搭建到运用运行仅仅需要的是你宝贵的几分钟。其实很多开发者都不知道自己用在用Ehcache,Ehcache被广泛的运用于早则圆其他的开源项目
比如:hibernate
3.够袖珍
关于这点的特性,官方给了一个很可爱的名字small foot print ,一般Ehcache的发布版本不会到2M,V 2.2.3 才 668KB。
4. 够轻量
核心程序仅仅依赖slf4j这一个包,没有之一!
5.好扩展
Ehcache提供了对大数据的内存和硬盘的存储,最近版本允许多实例、保存对象高灵活性、提供LRU、LFU、FIFO淘汰算法,基础属性支持热配置、支持的插件多
6.监听器
缓存管理器监听器 (CacheManagerListener)和 缓存监听器(CacheEvenListener),做一些统计或数据一致性广播挺好用的
5. JAVA目前比较常用的缓存有哪些 集中式缓存与分布式缓存有何区别 它们应用场景是
java目前常用的缓存:
Generic
JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, etc)
EhCache 2.x
Hazelcast
Infinispan
Couchbase
Redis
Caffeine
Guava (deprecated)
Simple
建议使用spring boot集成方式,可插拔,简单。
集中式缓存适用场景:
1、服务器集群部署。
2、数据高一致性(任何数据变化都能及时的被查询到)
分布式缓存适用场景:
系统需要缓存的数据量大
对数据的可用性较高的情况
需要横向扩展,从而达到缓存的容量无限的要求
6. Spring本地缓存的使用方法
我们现在在用的Spring Cache,可以直接看Spring Boot提供的缓存枚举类,有如下这些:
EhCache:一个纯Java的进程内缓存框架,所以也是基于本地缓存的。(注意EhCache2.x和EhCache3.x相互不兼容)。
Redis:分布式缓存,只有Client-Server(CS)模式,Java一般使用Jedis/Luttuce来操纵。
Hazelcast:基于内存的数据网格。虽然它基于内存,但是分布式应用程序可以使用Hazelcast进行分布式缓存、同步、集群、处理、发布/订阅消息等。
Guava:它是Google Guava工具包中的一个非常方便易用的本地化缓存实现,基于LRU(最近最少使用)算法实现,支持多种缓存过期策略。在Spring5.X以后的版本已经将他标记为过期了。
Caffeine:是使用Java8对Guava缓存的重写版本,在Spring5中将取代了Guava,支持多种缓存过期策略。
SIMPLE:使用ConcurrentMapCacheManager,因为不支持缓存过期时间,所以做本地缓存基本不考虑该方式。
关于分布式缓存,我们需要后面会专门讨论Redis的用法,这里只看本地缓存。性能从高到低,依次是Caffeine,Guava,ConcurrentMapCacheManager,其中Caffeine在读写上都快了Guava近一倍。
这里我们只讨论在Spring Boot里面怎么整合使用Caffeine和EhCache。
主要有以下几个步骤:
1)加依赖包:
2)配置缓存:
这里有两种方法,通过文件配置或者在配置类里面配置,先看一下文件配置,我们可以写一个properties文件,内容像这样:
然后还要在主类中加上@EnableCaching注解:
另外一种更灵活的方法是在配置类中配置:
应用类:
测试类:
导入依赖包,分为2.x版本和3.x版本。
其中2.x版本做如下导入:
3.x版本做如下导入:
导包完成后,我们使用JCacheManagerFactoryBean + ehcache.xml的方式配置:
参考资料:
https://blog.csdn.net/f641385712/article/details/94982916
http://www.360doc.com/content/17/1017/20/16915_695800687.shtml
7. 分布式缓存的作用
分布式缓存主要用于在高并发环境下,减轻数据库的压力,提高系统的响应速度和并发吞吐。当大量的读、写请求涌向数据库时,磁盘的处理速度与内存显然不在一个量级,因此,在数据库之前加一层缓存,能够显着提高系统的响应速度,并降低数据库的压力。作为传统的关系型数据库,MySQL提供完整的ACID操作,支持丰富的数据类型、强大的关联查询、where语句等,能够非常客易地建立查询索引,执行复杂的内连接、外连接、求和、排序、分组等操作,并且支持存储过程、函数等功能,产品成熟度高,功能强大。但是,对于需要应对高并发访问并且存储海量数据的场景来说,出于对性能的考虑,不得不放弃很多传统关系型数据库原本强大的功能,牺牲了系统的易用性,并且使得系统的设计和管理变得更为复杂。这也使得在过去几年中,流行着另一种新的存储解决方案——NoSQL,它与传统的关系型数据库最大的差别在于,它不使用SQL作为查询语言来查找数据,而采用key-value形式进行查找,提供了更高的查询效率及吞吐,并且能够更加方便地进行扩展,存储海量数据,在数千个节点上进行分区,自动进行数据的复制和备份。在分布式系统中,消息作为应用间通信的一种方式,得到了十分广泛的应用。消息可以被保存在队列中,直到被接收者取出,由于消息发送者不需要同步等待消息接收者的响应,消息的异步接收降低了系统集成的耦合度,提升了分布式系统协作的效率,使得系统能够更快地响应用户,提供更高的吞吐。
当系统处于峰值压力时,分布式消息队列还能够作为缓冲,削峰填谷,缓解集群的压力,避免整个系统被压垮。垂直化的搜索引擎在分布式系统中是一个非常重要的角色,它既能够满足用户对于全文检索、模糊匹配的需求,解决数据库like查询效率低下的问题,又能够解决分布式环境下,由于采用分库分表,或者使用NoSQL数据库,导致无法进行多表关联或者进行复杂查询的问题。
8. Java数据库,哪个更好用
你好,对于java来说,MySQL是最好用的数据库。因为MySQL简单,高效,而且是免费的。有很多大型的java应用都是使用的MySQL数据库。