什么场景会导致缓存雪崩
Ⅰ 该怎么解决 Redis 缓存穿透和缓存雪崩问题
缓存雪崩: 由于缓存层承载着大量请求,有效地 保护了存储层,但是如果缓存层由于某些原因不能提供服务,比如 Redis 节点挂掉了,热点 key 全部失效了,在这些情况下,所有的请求都会直接请求到数据库,可能会造成数据库宕机的情况。
预防和解决缓存雪崩问题,可以从以下三个方面进行着手:
1、使用 Redis 高可用架构:使用 Redis 集群来保证 Redis 服务不会挂掉
2、缓存时间不一致: 给缓存的失效时间,加上一个随机值,避免集体失效
3、限流降级策略:有一定的备案,比如个性推荐服务不可用了,换成热点数据推荐服务
缓存穿透: 缓存穿透是指查询一个根本不存在的数据,这样的数据肯定不在缓存中,这会导致请求全部落到数据库上,有可能出现数据库宕机的情况。
预防和解决缓存穿透问题,可以考虑以下两种方法:
1、缓存空对象: 将空值缓存起来,但是这样就有一个问题,大量无效的空值将占用空间,非常浪费。
2、布隆过滤器拦截: 将所有可能的查询key 先映射到布隆过滤器中,查询时先判断key是否存在布隆过滤器中,存在才继续向下执行,如果不存在,则直接返回。布隆过滤器有一定的误判,所以需要你的业务允许一定的容错性。
Ⅱ redis常见问题
1. 缓存击穿
缓存击穿是指一个请求要访问的数据,缓存中没有,但数据库中有的情况。这种情况一般都是缓存过期了。
但是这时由于并发访问这个缓存的用户特别多,这是一个热点 key,这么多用户的请求同时过来,在缓存里面没有取到数据,所以又同时去访问数据库取数据,引起数据库流量激增,压力瞬间增大,直接崩溃给你看。
所以一个数据有缓存,每次请求都从缓存中快速的返回了数据,但是某个时间点缓存失效了,某个请求在缓存中没有请求到数据,这时候我们就说这个请求就"击穿"了缓存。
针对这个场景,对应的解决方案一般来说有三种。
借助Redis setNX命令设置一个标志位就行。设置成功的放行,设置失败的就轮询等待。就是在更新缓存时加把锁
后台开一个定时任务,专门主动更新过期数据
比如程序中设置 why 这个热点 key 的时候,同时设置了过期时间为 10 分钟,那后台程序在第 8 分钟的时候,会去数据库查询数据并重新放到缓存中,同时再次设置缓存为 10 分钟。
其实上面的后台续命思想的最终体现是也是永不过期。
只是后台续命的思想,会主动更新缓存,适用于缓存会变的场景。会出现缓存不一致的情况,取决于你的业务场景能接受多长时间的缓存不一致。
2. 缓存穿透
缓存穿透是指一个请求要访问的数据,缓存和数据库中都没有,而用户短时间、高密度的发起这样的请求,每次都打到数据库服务上,给数据库造成了压力。一般来说这样的请求属于恶意请求。
解决方案有两种:
就是在数据库即使没有查询到数据,我们也把这次请求当做 key 缓存起来,value 可以是 NULL。下次同样请求就会命中这个 NULL,缓存层就处理了这个请求,不会对数据库产生压力。这样实现起来简单,开发成本很低。
3. 缓存雪崩
缓存雪崩是指缓存中大多数的数据在同一时间到达过期时间,而查询数据量巨大,这时候,又是缓存中没有,数据库中有的情况了。
防止雪崩的方案简单来说就是错峰过期。
在设置 key 过期时间的时候,在加上一个短的随机过期时间,这样就能避免大量缓存在同一时间过期,引起的缓存雪崩。
如果发了雪崩,我们可以有服务降级、熔断、限流手段来拒绝一些请求,保证服务的正常。但是,这些对用户体验是有一定影响的。
4. Redis 高可用架构
Redis 高可用架构,大家基本上都能想到主从、哨兵、集群这三种模式。
哨兵模式:
它主要执行三种类型的任务:
哨兵其实也是一个分布式系统,我们可以运行多个哨兵。
然后这些哨兵之间需要相互通气,交流信息,通过投票来决定是否执行自动故障迁移,以及选择哪个从服务器作为新的主服务器。
哨兵之间采用的协议是 gossip,是一种去中心化的协议,达成的是最终一致性。
选举规则:
Ⅲ 用云数据库会被打死吗
缓存雪崩、击穿、穿透及解决方案
1、缓存雪崩,出现过程,假如一个系统,高峰期5000次/s,4000次走了缓存,1000次走数据库,数据库1000/s是正常指标,完全可以工作,但是如果缓存宕机了,或者缓存设置了相同的过期时间,导致缓存同一时间失效,然后5000次请求都打在了数据库上,数据库立马被打死了,数据库一般1s最多抗2000个请求(这个取决于具体硬件配置),如果DBA重启数据库,同样的立马会继续被打死,这就是缓存雪崩。
Ⅳ redis缓存使用中的热key问题
在Redis中,访问频率高的key称为热点key,当某一热点key的请求到Server主机时,由于请求量特别大,导致主机资源不足,甚至宕机,影响正常的服务
1.用户消费的数据远大于生产的数据,比如热卖商品、热点新闻、热点评论等,这些典型的读多写少的场景会产生热点问题
2.请求分片集中,超过单Server的性能极限,比如 固定名称key,哈希落入一台Server,访问量极大的情况,超过Server极限时,就会导致热点Key问题的产生
1.流量集中,达到物理网卡上限,影响其他key的访问。
2.请求过多,缓存分片服务被打垮,不能通过扩容解决,且不能发挥集群多分片的优势。
3.缓存击穿,可能打到DB,引起业务雪崩。
1.凭借业务经验,进行预估哪些是热key
2.客户端统计收集,本地统计或者上报
3.如果服务端有代理层,可以在代理层进行收集上报
1.增加分片副本,分担读流量
2.热key备份,比如key,备份为key1,key2……keyN,同样的数据N个备份,N个备份分布到不同分片,访问时可随机访问N个备份中的一个,进一步分担读流量
3.使用本地缓存,发现热key后,将热key对应数据加载到应用服务器本地缓存中,访问热key数据时,直接从本地缓存中获取,而不会请求到redis服务器。
http://tigcms.jd.com/details/S11dBQ5M7.html
https://help.aliyun.com/document_detail/67252.html
https://www.cnblogs.com/rjzheng/p/10874537.html
Ⅳ 缓存击穿、穿透、雪崩及Redis分布式锁
分布式锁: setnx ,redisson 并发问题
幂等问题: 落表状态,Redis
缓存击穿: 指缓存中无,db中有
原因: 一个key高并发恰好失效导致大量请求到db
方案: 加锁,自旋锁,或一个线程查db,一个线程监控(直接用Redisson分布式锁)
缓存穿透:指缓存和db中均无
原因: 一般是恶意请求
方案: 加布隆过滤,或查db无时,也设置缓存,value为某些特殊表示或"null"
雪崩:指缓存同时大量失效
原因: 大量的key同时失效,db压力加大
方案: 设置失效时间是增加随机数
问题方案文献:
https://www.jianshu.com/p/31ab9b020cd9 (图例分析)
https://blog.csdn.net/fcvtb/article/details/89478554
Redis分布式锁:
事务未执行完锁已到期释放问题:使用Redissoin解决续租问题,内部已解决
分布式锁文献:
https://www.jianshu.com/p/4838f8be00c9
https://blog.csdn.net/qq_30038111/article/details/90696233 (setnx + expire同时操作)
====================================
https://www.runoob.com/redis/keys-scan.html
https://www.jianshu.com/p/611a492d9121 Redis原理与应用