raid0高速缓存模式
❶ 简述raid0 raid1 raid5 三种工作模式的工作原理及特点。
简述raid0 raid1 raid5 三种工作模式的工作原理及特点。
RAID 0:连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据
传输率,但它没有数据冗余,因此并不能算是真正的RAID 结构。RAID 0 只是单纯地提高
性能,并没有为数据的可圆培靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,
RAID 0 不能应用于数据安全性要求高的场合。
RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。
当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1 可以提高读取性能。RAID
1 是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,
系统可以自动切换到镜像磁盘上读写 ,而不需要重组失效的数据。简单来说就是:镜象结
构,类似于备份模式,一个数据被复制到两块硬盘上。
RAID10:高可靠性与高效磁盘结构
一个带区结构加一个镜象结构,因为两橘氏唯种结构各有优缺点,因此可以相互补充。
主要用于容量不大,但要求速度和差错控制的数据库中。
RAID5:分布式奇偶校验的独立磁盘结构,它的奇偶校验码存在于所有磁盘上,任何一个
硬盘损坏,都可以根据其它硬盘上的校验位来重建损坏的数据。支持一块盘掉线后仍然正常
运行。
如果有什么不懂的话可以去看看《linux就该这么学》这本书,非常适合新手学习Linux。
raid0/raid1/raid5三种工作模式的工作原理及特点是什么?
Raid0要速度,不要安全,raid1要安全,读取速度加快,raid5,速度和安全都有,但要阵列卡更高级。
RAID0/RAID1/RAID5的工作原理?
技术规范
(1)RAID技术规范简介
冗余磁盘阵列技术最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用,同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术,并且能适当的提升数据传输速度。
过去RAID一直是高档服务器才有缘享用,一直作为高档SCSI硬盘配套技术作应用。近来随着技术的发展和产品成本的不断下降,IDE硬盘性能有了很大提升,加之RAID芯片的普及,使得RAID也逐渐在个人电脑上得到应用。
那么为何叫做冗余磁盘阵列呢?冗余的汉语意思即多余,重复。而磁盘阵列说明不仅仅是一个磁盘,而是一组磁盘。这时你应该明白了,它是利用重复的磁盘来处理数据,使得数据的稳定性得到提高。
(2)RAID的工作原理
RAID如何实现数据存储的高稳定性呢?我们不妨来看一下它的工作原理。RAID按照实现原理的不同分为不同的级别,不核宏同的级别之间工作模式是有区别的。整个的RAID结构是一些磁盘结构,通过对磁盘进行组合达到提高效率,减少错误的目的,不要因为这么多名词而被吓坏了,它们的原理实际上十分简单。问了便于说明,下面示意图中的每个方块代表一个磁盘,竖的叫块或磁盘阵列,横称之为带区。
(3)RAID规范
主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:
RAID 0:无差错控制的带区组
要实现RAID0必须要有两个以上硬盘驱动器,RAID0实现了带区组,数据并不是保存在一个硬盘上,而是分成数据块保存在不同驱动器上。因为将数据分布在不同驱动器上,所以数据吞吐率大大提高,驱动器的负载也比较平衡。如果刚好所需要的数据在不同的驱动器上效率最好。它不需要计算校验码,实现容易。它的缺点是它没有数据差错控制,如果一个驱动器中的数据发生错误,即使其它盘上的数据正确也无济于事了。不应该将它用于对数据稳定性要求高的场合。如果用户进行图象(包括动画)编辑和其它要求传输比较大的场合使用RAID0比较合适。同时,RAID可以提高数据传输速率,比如所需读取的文件分布在两个硬盘上,这两个硬盘可以同时读取。那么原来读取同样文件的时间被缩短为1/2。
RAID 1:镜象结构
对于使用这种RAID1结构的设备来说,RAID控制器必须能够同时对两个盘进行读操作和对两个镜象盘进行写操作。通过下面的结构图您也可以看到必须有两个驱动器。因为是镜象结构在一组盘出现问题时,可以使用镜象,提高系统的容错能力。它比较容易设计和实现。每读一次盘只能读出一块数据,也就是说数据块传送速率与单独的盘的读取速率相同。因为RAID1的校验十分完备,因此对系统的处理能力有很大的影响,通常的RAID功能由软件实现,而这样的实现方法在服务器负载比较重的时候会大大影响服务器效率。当您的系统需要极高的可靠性时,如进行数据统计,那么使用RAID1比较合适。而且RAID1技术支持“热替换”,即不断电的情况下对故障磁盘进行更换,更换完毕只要从镜像盘上恢复数据即可。当主硬盘损坏时,镜像硬盘就可以代替主硬盘工作。镜像硬盘相当于一个备份盘,可想而知,这种硬盘模式的安全性是非常高的,但带来的后果是硬盘容量利用率很低,只有50%,是所有RAID级别中最低的。
RAID2:带海明码校验
从概念上讲,RAID 2 同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID 2 使用一定的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂。因此,在商业环境中很少使用。下图左边的各个磁盘上是数据的各个位,由一个数据不同的位运算得到的海明校验码可以保存另一组磁盘上,具体情况请见下图。由于海明码的特点,它可以在数据发生错误的情况下将错误校正,以保证输出的正确。它的数据传送速率相当高,如果希望达到比较理想的速度,那最好提高保存校验码ECC码的硬盘,对于控制器的设计来说,它又比RAID3,4或5要简单。没有免费的午餐,这里也一样,要利用海明码,必须要付出数据冗余的代价。输出数据的速率与驱动器组中速度最慢的相等。
RAID3:带奇偶校验码的并行传送
这种校验码与RAID2不同,只能查错不能纠错。它访问数据时一次处理一个带区,这样可以提高读取和写入速度。校验码在写入数据时产生并保存在另一个磁盘上。需要实现时用户必须要有三个以上的驱动器,写入速率与读出速率都很高,因为校验位比较少,因此计算时间相对而言比较少。用软件实现RAID控制将是十分困难的,控制器的实现也不是很容易。它主要用于图形(包括动画)等要求吞吐率比较高的场合。不同于RAID 2,RAID 3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据。 如果奇偶盘失效,则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据,奇偶盘会成为写操作的瓶颈。
RAID4:带奇偶校验码的独立磁盘结构
RAID4和RAID3很象,不同的是,它对数据的访问是按数据块进行的,也就是按磁盘进行的,每次是一个盘。在图上可以这么看,RAID3是一次一横条,而RAID4一次一竖条。它的特点的RAID3也挺象,不过在失败恢复时,它的难度可要比RAID3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。
RAID5:分布式奇偶校验的独立磁盘结构
从它的示意图上可以看到,它的奇偶校验码存在于所有磁盘上,其中的p0代表第0带区的奇偶校验值,其它的意思也相同。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。因为奇偶校验码在不同的磁盘上,所以提高了可靠性。但是它对数据传输的并行性解决不好,而且控制器的设计也相当困难。RAID 3 与RAID 5相比,重要的区别在于RAID 3每进行一次数据传输,需涉及到所有的阵列盘。而对于RAID 5来说,大部分数据传输只对一块磁盘操作,可进行并行操作。在RAID 5中有“写损失”,即每一次写操作,将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
RAID6:带有两种分布存储的奇偶校验码的独立磁盘结构
名字很长,但是如果看到图,大家立刻会明白是为什么,请注意p0代表第0带区的奇偶校验值,而pA代表数据块A的奇偶校验值。它是对RAID5的扩展,主要是用于要求数据绝对不能出错的场合。当然了,由于引入了第二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载。我想除了军队没有人用得起这种东西。
RAID7:优化的高速数据传送磁盘结构
RAID7所有的I/O传送均是同步进行的,可以分别控制,这样提高了系统的并行性,提高系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传送信道以提高效率。可以连接多台主机,因为加入高速缓冲存储器,当多用户访问系统时,访问时间几乎接近于0。由于采用并行结构,因此数据访问效率大大提高。需要注意的是它引入了一个高速缓冲存储器,这有利有弊,因为一旦系统断电,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作。当然了,这么快的东西,价格也非常昂贵。
RAID10:高可靠性与高效磁盘结构
这种结构无非是一个带区结构加一个镜象结构,因为两种结构各有优缺点,因此可以相互补充,达到既高效又高速还可以的目的。大家可以结合两种结构的优点和缺点来理解这种新结构。这种新结构的价格高,可扩充性不好。主要用于容易不大,但要求速度和差错控制的数据库中。
RAID53:高效数据传送磁盘结构
越到后面的结构就是对前面结构的一种重复和再利用,这种结构就是RAID3和带区结构的统一,因此它速度比较快,也有容错功能。但价格十分高,不易于实现。这是因为所有的数据必须经过带区和按位存储两种方法,在考虑到效率的情况下,要求这些磁盘同步真是不容易。
RAID 0 1 3 5的工作原理
通俗点说raid0 需要2个或则2的倍数个硬盘 数据分块储存在2块或以上硬盘上,读写速度理论上为2或2的倍速,一个硬盘数据丢失,全部数据丢失。raid1 需要2个或则2的倍数个硬盘 数据分别同时写入2个硬盘,热备份,一个硬盘数据丢失或则损坏,并不影响数据和使用raid5 需要4个或则4的倍数个硬盘,数据分块存储在4个硬盘上,并做数据验证,一个硬盘损坏只要更换硬盘不影响数据。
RAID的几种工作模式
RAID是英文Rendant Array of Inexpensive Disks的缩写,中文简称为廉价磁盘冗余阵列。RAID就是一种由多块硬盘构成的冗余阵列。虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现。利用RAID技术于存储系统的好处主要有以下三种:
通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能
通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度
通过镜像或校验操作提供容错能力
最初开发RAID的主要目的是节省成本,当时几块小容量硬盘的价格总和要低于大容量的硬盘。目前来看RAID在节省成本方面的作用并不明显,但是RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。常用的RAID级别有以下几种:NRAID,JBOD,RAID0,RAID1,RAID0+1,RAID3,RAID5等。目前经常使用的是RAID5和RAID
(0+1)。
磁盘阵列卡
磁盘阵列(Disk Array)是由一个硬盘控制器来控制多个硬盘的相互连接,使多个硬盘的读写同步,减少错误,增加效率和可靠度的技术。磁盘阵列卡则是实现这一技术的硬件产品,磁盘阵列卡拥有一个专门的处理器,还拥有专门的存贮器,用于高速缓冲数据。使用磁盘阵列卡服务器对磁盘的操作就直接通过阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。
RAID是英文Rendant Array of Independent Disks的缩写,翻译成中文意思是“独立磁盘冗余阵列”,有时也简称磁盘阵列(Disk Array)。
简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据备份技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。数据备份的功能是在用户数据一旦发生损坏后,利用备份信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。在用户看起来,组成的磁盘组就像是一个硬盘,用户可以对它进行分区,格式化等等。总之,对磁盘阵列的操作与单个硬盘一模一样。不同的是,磁盘阵列的存储速度要比单个硬盘高很多,而且可以提供自动数据备份。
RAID技术的两大特点:一是速度、二是安全,由于这两项优点,RAID技术早期被应用于高级服务器中的SCSI接口的硬盘系统中,随着近年计算机技术的发展,PC机的CPU的速度已进入GHz 时代。IDE接口的硬盘也不甘落后,相继推出了ATA66和ATA100硬盘。这就使得RAID技术被应用于中低档甚至个人PC机上成为可能。RAID通常是由在硬盘阵列塔中的RAID控制器或电脑中的RAID卡来实现的。
RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。但我们最为常用的是下面的几种RAID形式。
(1) RAID 0
(2) RAID 1
(3) RAID 0+1
(4) RAID 3
(5) RAID 5
RAID级别的选择有三个主要因素:可用性(数据冗余)、性能和成本。如果不要求可用性,选择RAID0以获得最佳性能。如果可用性和性能是重要的而成本不是一个主要因素,则根据硬盘数量选择RAID 1。如果可用性、成本和性能都同样重要,则根据一般的数据传输和硬盘的数量选择RAID3、RAID5。
硬盘列阵RAID1的工作原理是什么?
RAID 1磁盘阵列级,是一种镜像磁盘阵列,其原理就是将一块硬盘的数据以相同位置指向另一块硬盘的位置。RAID 1磁盘阵列又称为Mirror或Mirroring(镜像),因为它就是将一块硬盘的内容完全复制到另一块硬盘上。
一个两块硬盘所构成RAID磁盘阵列阵列,其容量仅等于一块硬盘的容量,因为另一块只是当作数据“镜像”。RAID 1磁盘阵列显然是最可靠的一种阵列,因为它总是保持一份完整的数据备份。
它的性能自然没有RAID 0磁盘阵列那样好,但其数据读取确实较单一硬盘来的快,因为数据会从两块硬盘中较快的一块中读出。RAID 1磁盘阵列的写入速度通常较慢,因为数据得分别写入两块硬盘中并做比较。
RAID 1磁盘阵列一般支持“热交换”,就是说阵列中硬盘的移除或替换可以在系统运行时进行,无须中断退出系统。RAID 1磁盘阵列是十分安全的,不过也是较贵一种RAID磁盘阵列解决方案,因为两块硬盘仅能提供一块硬盘的容量。RAID 1磁盘阵列主要用在数据安全性很高,而且要求能够快速恢复被破坏的数据的场合。
什么是RAID?RAID的工作原理
参考 网络: 磁盘阵列。
简述listview控件的工作模式
ListViewItem lvi = new ListViewItem(new string[] {“ch1”,"(ch2" }, -1);创建列表项 lsv.Items.Add(lvi);将项加入listView1列表中
一、View 属性
ListView 控件作为一个可以显示图标或者子项的列表控件,它最重要的属性就是 View 属性,该属性决定了以哪种视图模式显示控件的项,这四种视图模式分别如下:
1、LartIcon:大图标视图模式,在项的文本旁显示大的图标,在控件宽度足够的情况下,项是如图一中的盘符一样优先以平行排列的,排列不完的则自动换行显示在新行中。
2、SmallIcon:小图标视图模式,与大图标模式一样,但是显示的是小的图标。
3、List:列表视图模式,显示小图标,但是项是垂直排列的,只显示单列。
4、Details:详细资料视图模式,是最丰富的选项,它不但允许您查看项,还允许您查看为各项指定的任何子项。各项在网格中显示,它们垂直排列且其子项会显示在列中(带有列标头)。对应地,只有在Details 视图模式中起作用的控件属性为:GridLines 和 FullRowSelect,GridLines 属性指示在包含控件中项及其子项的行和列之间是否显示网格线。FullRowSelect 属性指示单击某项是否选择其所有子项(即整行选中),如下图三所示便是GridLines 和 FullRowSelect 属性都设置为True的情况:
ListView 控件中还有一个HeaderStyle 属性也是在Details 视图模式下才起作用,HeaderStyle 属性指示列标头样式,它有下面三种显示样式:
1、Clickable:列标头的作用类似于按钮,单击时可以执行操作(例如排序)。
2、Nonclickable:列标头不响应鼠标单击。
3、None:列标头在报表视图中不显示。
二、Items 属性
此外,ListView 控件最重要的属性是 Items 属性,它包含了控件所有的存在的项。SelectedItems 属性是控件当前选定项的 *** ,同时和它关联的 SelectedIndices 属性是控件中选定项的索引 *** ,如下示例所示,我们分别在SelectedItems 属性和SelectedIndices 属性中获取所选项索引,窗体上拖放了ListView控件和一个Button 控件,且已经往ListView控件中添加了若干列和行
两个属性都能获得所选项在控件中的索引,我们在实际应用的时候可以灵活选择使用它们中的一个,以达到简化代码的目的。
❷ 什么是硬盘raid0 这是什么意思 高手进
RAID 0是RAID(磁盘阵列)的一种工作模式,又称为Stripe或Striping,它可以提供所有RAID级别中最高的存储性能。
RAID 0的基本原理是RAID控碧握制器将多块硬盘的空间合并在一起,视为一个逻辑硬盘来管理。实现RAID 0至少需要两块硬盘。通过增加使用的硬盘数量,RAID 0可以运圆实现非常大的分区空间和极佳的读写速度。这是因为在RAID 0模式下,数据的写入是分散地写入所有组成RAID 0的悔悄庆硬盘,显然,由于读写的磁头数翻倍,那么读写的速度也会翻倍。但是RAID 0的缺点在于它没有提供数据保护功能,所以只要任何一块硬盘损坏就会丢失所有数据,因此RAID 0 不可应用于需要数据高可用性的关键领域。
❸ 硬盘阵列模式RAID 0,RAID 1,RAID 5,RAID 10是什么意思
RAID 0 :指 Data Stripping数据分条技术。RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。
RAID 1 :指磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上
RAID 5 :指大部分数据传输只对一块磁盘操作,并可进行并行操作不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息
RAID 10 :连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。
磁盘阵列其样式有三种,一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件来仿真。
外接式磁盘阵列柜最常被使用大型服务器上,具可热交换(Hot Swap)的特性,不过这类产品的价格都很贵。
内接式磁盘阵列卡,因为价格便宜,但需要较高的安装技术,适合技术人员使用操作。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。
它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。阵列卡专用的处理单元来进行操作。
(3)raid0高速缓存模式扩展阅读:
磁盘阵列(Rendant Arrays of Independent Drives,RAID),有“独立磁盘构成的具有冗余能力的阵列”之意。
磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
参考资料:磁盘阵列 网络
❹ 磁盘回写高速缓存
应该不会有这种情况啊,打开卷回写高速缓存,会提高硬盘的性能,RAID0的性能就已经很高了,再加上是SSD,应该还要高点。试试反复关闭打开几次后再测试看看
❺ 硬盘阵列模式RAID 0,RAID 1,RAID 5,RAID 10是什么意思
1、raid0 就是把多个(最少2个)硬盘合并成1个逻辑盘使用,数据读写时对各硬盘同时操作,不同硬盘写入瞎羡歼不同数据,速度快。
2、raid1就是同时对2个硬盘读写(同样的数据)。强调数据的安全性。比较浪费。
3、raid5也是把多个(最少3个)硬盘合并成1个逻辑盘使用,数据读写时会建立奇磨冲偶校验信息,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。相当于raid0和raid1的综合。
4、raid10就是raid1+raid0,速度要求高,完全容错,当然很多时候需要钱也最多。
❻ 硬盘智能响应的问题
这个想法确实不错 ,我也曾有过,但是刚想到就否决了。首先,由于家用消费型机器的限制,你要组建RAID,但你有三块竖让硬盘,由于机器整个工作在RAID模式,两块磁盘可以组成raid了,另一个SSD怎么在主板控制的RAID模式下工作?我个人是不确定,家用型机器是否能支持这种混杂模式,(即单块硬盘的普通工作模式,加双磁盘的raid模式)。服务器上是可以创建单磁盘的RAID0的,只有一块磁盘,但是这个磁盘创建RAID0后,就成为一块虚拟磁盘了,raid卡(芯片)在raid模式下一般都是识别虚拟磁盘的,多磁盘组成raid后,也是一个虚拟磁盘了。 家用机型一般是不支持单磁盘RAID 0的.要成就你的想法,必须了解各种品牌的芯片组是否支持混杂的(但磁盘普通模式和多磁盘的raid模式,就是看此处单个磁盘能不能被主板识别为普通磁盘来使用),这个技术参数的问题就得询问主板厂商了。主板厂商是通过硬件(芯片)提供raid的,你的想法如果通过软件RAID肯定是可以实现的。至少在linux下可以,但是linux是否支持智能响应就不知道了。但是可以在linux里通过通过内存磁盘给raid0做缓存,不是比SSD更有优势吗,做缓存一般几十兆就够大,内存都能应付了。我觉得,有一块SSD了,就可以了,剩下的尘郑组成RAID0,对于大文件,都是连续读写,raid0优势也完全发挥,台式机的磁盘读写比笔记本的快,极限速度基本上也达到2 到300MB/s了,赶上普通SSD了,而小文件存到SSD,有低延迟上的优势,小文件一般家一起也不大,SSD也够用了。理论上讨论,咱们可以较真,实际使用上,不用余兄局钻牛角,非得SSD做RAID0缓存.