分布式缓存数据一致性
Ⅰ 大数据环境下分布式文件系统有哪些特点,相应的优化思路是什么
分布式元数据管理:分布式元数据管理主要通过元数据服务分布式部署的方式,实现了元数据分布式管理,解决一般分布式文件系统的单元数据服务节点导致的响应用户请求效率不高、存储文件数目受限和单点故障等问题,具有降低用户请求处理延迟,提高分布式文件系统的可扩展性和可用性的特性。一般包括完全分布式架构、元数据访问负载均衡、元数据服务器高效索引、元数据服务器弹性伸缩等技术点。
多层级存储管理:多层级存储管理用于实现内存 / SSD/HDD 等异构存储设备的池化管理,以及各类存储设备的动态接入管理,通过设备抽象和提供统一命名空间,面向分布式文件系统提供统一的存储资源池,支持热点数据自动感知和智能化存储调度,最大程度提升数据存储与访问的效能。一般包括异构存储设备管理、多存储系统适配、统一命名空间、基于热度的存储资源调度等技术点厅册带。
数据一致性保障:数据一致性保障主要解决分布式文件系统中多副本和缓存等在数据存储与访问过程中的一致性问题,通过构建数据一致性模型、进行数据一致性校验等方式,保障数据在存储和访问过程中的一致性,在提升数据访问性能的同时确保数据存储和访问的正确性。一般包括一致性协议优化、一致性检验等技术点。
高并行读写优化:高并行读写优化用于提高分布式文件读写的并行化水平,最大化提升分布式文件系统下的数据访问效率。一般包括分布式数据访问缓存管理和调度算法优化、IO 算法优化和合并 IO 等技术点。
分布式散列与动态均衡:分布式散列与动态均衡实现分布式文件系统下高性能的数据块定位,提高数据访问性能,以及数据块的迁移和再平衡,提升分布式文件系统的稳定性和可持续服务能力。一般包扮芦括基于一致性哈希的数据块索引管理、动态数据再平衡等技术点。
存储高可用:存储高可用通过数据多副本技术、状态自检测和自修复、核心服务分布式部署等技术手段,实现自动检测分布式文件系统中的各种错误和失效,并且在文件系统出现错误和失效时可自行进行多副本间的数据修复,最终持续向用户提供正常的数据访问服务。一般包括可配置数据多副本、数据自恢复及自维护等技术点。
海量小文件高性能存储访问:海量小文件高性能存储访问主要采用小文件汇集成大文件进姿睁行存储、细粒度二级索引管理等技术,实现在现有分布式文件系统的基础上,扩展对海量小文件的存储与访问的能力,同时解决小文件的随机读写问题,大大提高分布式文件系统对海量小文件的存储访问效率。
Ⅱ Redis-分布式缓存一致性解决方案
一致性Hash算法也使用取模的方法,刚才描述的慎行备取模法是对服务器的数量进行宽毁取模,而一致性Hash算法是对2^32取模
首先,我们把2^32 想象成一带滚个圆,圆上一共有2^32 个点,编号0-2^32-1,这个圆称为hash环
Ⅲ 华为技术架构师分享:高并发场景下缓存处理的一些思路
在实际的开发当中,我们经常需要进行磁盘数据的读取和搜索,因此经常会有出现从数据库读取数据的场景出现。但是当数据访问量次数增大的时候,过多的磁盘读取可能会最终成为整个系统的性能瓶颈,甚至是压垮整个数据库,导致系统卡死等严重问题。
常规的应用系统中,我们通常会在需要的时候对数据库进行查找,因此系统的大致结构如下所示:
1.缓存和数据库之间数据一致性问题
常用于缓存处理的机制我总结为了以下几种:
首先来简单说说Cache aside的这种方式:
Cache Aside模式
这种模式处理缓存通常都是先从数据库缓存查询,如果缓存没有命中则从数据库中进行查找。
这里面会发生的三种情况如下:
缓存命中:
当查询的时候发现缓存存在,那么直接从缓存中提取。
缓存失效:
当缓存没有数据的时候,则从database里面读取源数据,再加入到cache里面去。
缓存更新:
当有新的写操作去修改database里面的数据时,需要在写操作完成之后,让cache里面对应的数据失效。
关于这种模式下依然会存在缺陷。比如,一个是读操作,但是没有命中缓存,然后就到数据库中取数据,此时来了一个写操作,写完数据库后,让缓存失效,然后,之前的那个读操作再把老的数据放进去,所以,会造成脏数据。
Facebook的大牛们也曾经就缓存处理这个问题发表过相关的论文,链接如下:
分布式环境中要想完全的保证数据一致性是一件极为困难的事情,我们只能够尽可能的减低这种数据不一致性问题产生的情况。
Read Through模式
Read Through模式是指应用程序始终从缓存中请求数据。 如果缓存没有数据,则它负责使用底层提供程序插件从数据库中检索数据。 检索数据后,缓存会自行更新并将数据返回给调用应用程序。使用Read Through 有一个好处。
我们总是使用key从缓存中检索数据, 调用的应用程序不知道数据库, 由存储方来负责自己的缓存处理,这使代码更具可读性, 代码更清晰。但是这也有相应的缺陷,开发人员需要给编写相关的程序插件,增加了开发的难度性。
Write Through模式
Write Through模式和Read Through模式类似,当数据发生更新的时候,先去Cache里面进行更新,如果命中了,则先更新缓存再由Cache方来更新database。如果没有命中的话,就直接更新Cache里面的数据。
2.缓存穿透问题
在高并发的场景中,缓存穿透是一个经常都会遇到的问题。
什么是缓存穿透?
大量的请求在缓存中没有查询到指定的数据,因此需要从数据库中进行查询,造成缓存穿透。
会造成什么后果?
大量的请求短时间内涌入到database中进行查询会增加database的压力,最终导致database无法承载客户单请求的压力,出现宕机卡死等现象。
常用的解决方案通常有以下几类:
1.空值缓存
在某些特定的业务场景中,对于数据的查询可能会是空的,没有实际的存在,并且这类数据信息在短时间进行多次的反复查询也不会有变化,那么整个过程中,多次的请求数据库操作会显得有些多余。
不妨可以将这些空值(没有查询结果的数据)对应的key存储在缓存中,那么第二次查找的时候就不需要再次请求到database那么麻烦,只需要通过内存查询即可。这样的做法能够大大减少对于database的访问压力。
2.布隆过滤器
通常对于database里面的数据的key值可以预先存储在布隆过滤器里面去,然后先在布隆过滤器里面进行过滤,如果发现布隆过滤器中没有的话,就再去redis里面进行查询,如果redis中也没有数据的话,再去database查询。这样可以避免不存在的数据信息也去往存储库中进行查询情况。
什么是缓存雪崩?
当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,也会给后端系统(比如DB)带来很大压力。
如何避免缓存雪崩问题?
1.使用加锁队列来应付这种问题。当有多个请求涌入的时候,当缓存失效的时候加入一把分布式锁,只允许抢锁成功的请求去库里面读取数据然后将其存入缓存中,再释放锁,让后续的读请求从缓存中取数据。但是这种做法有一定的弊端,过多的读请求线程堵塞,将机器内存占满,依然没有能够从根本上解决问题。
2.在并发场景发生前,先手动触发请求,将缓存都存储起来,以减少后期请求对database的第一次查询的压力。数据过期时间设置尽量分散开来,不要让数据出现同一时间段出现缓存过期的情况。
3.从缓存可用性的角度来思考,避免缓存出现单点故障的问题,可以结合使用 主从+哨兵的模式来搭建缓存架构,但是这种模式搭建的缓存架构有个弊端,就是无法进行缓存分片,存储缓存的数据量有限制,因此可以升级为Redis Cluster架构来进行优化处理。(需要结合企业实际的经济实力,毕竟Redis Cluster的搭建需要更多的机器)
4.Ehcache本地缓存 + Hystrix限流&降级,避免MySQL被打死。
使用 Ehcache本地缓存的目的也是考虑在 Redis Cluster 完全不可用的时候,Ehcache本地缓存还能够支撑一阵。
使用 Hystrix进行限流 & 降级 ,比如一秒来了5000个请求,我们可以设置假设只能有一秒 2000个请求能通过这个组件,那么其他剩余的 3000 请求就会走限流逻辑。
然后去调用我们自己开发的降级组件(降级),比如设置的一些默认值呀之类的。以此来保护最后的 MySQL 不会被大量的请求给打死。
Ⅳ 分布式缓存中,哈希取余分区和一致性哈希分区有什么区别
环割法(一致性 hash)环割法的原理如下:
1. 初始化的时候生成分片数量 X × 环割数量 N 的固定方式编号的字符串,例如 SHARD-1-NODE-1,并计算所有 X×N 个字符串的所有 hash 值。
2. 将所有计算出来的 hash 值放到一个排序的 Map 中,并将其中的所有元素进行排序。
3. 输入字符串的时候计算输入字符串的 hash 值,查看 hash 值介于哪两个元素之间,取小于 hash 值的那个元素对应的分片为数据的分片。
数据比较
下面将通过测试对环割法和跳跃法的性能及均衡性进行对比,说明 DBLE 为何使用跳跃法代替了环割法。
数据源:现场数据 350595 条
测试经过:
1. 通过各自的测试方法执行对于测试数据的分片任务。
2. 测试方法侍嫌竖:记录老大分片结果的方差;记录从开始分片至分片结束的时间;记录分片结果与平均数的最大差值。
3. 由于在求模法 PartitionByString 的方法中要求分片的数量是 1024 的因数,所以测试过程只能使用 2 的指数形式进行测试,并在 PartitionByString 方法进行测试的时候不对于 MAC 地址进行截断,取全量长度进行测试。
Ⅳ chcahe 如何保证分布式缓存数据一致性
VPLEX的技术核心是“分布式缓存一致性”,下图则是“分布式缓存一致性”技术的工作机制示意:正是因为这项核心技术优势,使得VPLEX方案和目前所有厂商的虚拟化方案截然不同,并能够实现异地的数据中心整合。对跨数据中心的所有负载实现跨引擎的平摊或者实时迁移,来自任何一个主机的I/O请求可以通过任何一个引擎得到响应。
缓存一致性的记录目录使用少量的元数据,记录下哪个数据块属于哪个引擎更新的,以及在何时更新过,并通过4K大小的数据块告诉在集群中的所有其他的引擎。在整个过程中实际发生的沟通过程,远远比实际上正在更新数据块少很多。
分布式缓存一致性数据流示意图:上方是一个目录,记录下左侧的主机读取缓存A的操作,并分发给所有引擎,右侧主机需要读取该数据块时,会先通过目录查询,确定该数据块所属的引擎位置,读取请求会直接发送给引擎,并直接从数据块所在的缓存上读取。
当一个读请求进入时,VPLEX会自动检查目录,查找该数据块所属的引擎,一旦确定该数据块所属的引擎位置,读的请求会直接发送给该引擎。一旦一个写入动作完成,并且目录表被修改,这时另一个读请求从另一个引擎过来,VPLEX会检查目录,并且直接从该引擎的缓存上读取。如果该数据仍然在缓存上,则完全没必要去磁盘上读取。
如上图,来自图中左侧主机的操作,由Cache A服务,会记录一个更新状态,并分发给所有所有引擎知道。如果读取的需求来自最右侧的服务器,首先通过目录查询。通过这种技术可以实现所有引擎一致性工作,而且这个技术不仅可以跨引擎还可以跨VPLEX集群,而VPLEX集群可以跨区域,因此缓存一致性也可以跨区域部署。
分布式缓存一致性技术使VPLEX相比传统的虚拟化方案拥有更高的性能和可靠性,并实现异地数据中心的虚拟化整合
对传统的虚拟化架构来说,如果虚拟化的I/O集群中有一个节点坏了,那么性能就会降低一半,而且实际情况降低不止一半。因为坏了一个节点,这个节点缓存一般会被写进去。因为没有缓存,操作会直接写到硬盘里。如果图中中心这个节点坏掉,那主机所有的可用性都没有了。而VPLEX如果有一个引擎或者一个控制器坏掉了,那这个引擎的负载会均摊到其他活动引擎上。这样总体来讲用户可以维持可预知性能,性能降低也不那么明显。
Ⅵ Redis分布式缓存搭建
花了两天时间整理了之前记录的Redis单体与哨兵模式的搭建与使用,又补齐了集群模式的使用和搭建经验,并对集群的一些个原理做了理解。
笔者安装中遇到的一些问题:
如果make报错,可能是没装gcc或者gcc++编辑器,安装之 yum -y install gcc gcc-c++ kernel-devel ,有可能还是提示一些个c文件编译不过,gcc -v查看下版本,如果不到5.3那么升级一下gcc:
在 /etc/profile 追加一行 source /opt/rh/devtoolset-9/enable
scl enable devtoolset-9 bash
重新make clean, make
这回编译通过了,提示让你最好make test一下/
执行make test ,如果提示 You need tcl 8.5 or newer in order to run the Redis test
那就升级tcl, yum install tcl
重新make test,如果还有error就删了目录,重新tar包解压重新make , make test
o/ All tests passed without errors! ,表示编译成功。
然后make install即可。
直接运行命令: ./redis-server /usr/redis-6.0.3/redis.conf &
redis.conf 配置文件里 bind 0.0.0.0 设置外部访问, requirepass xxxx 设置密码。
redis高可用方案有两种:
常用搭建方案为1主1从或1主2从+3哨兵监控主节点, 以及3主3从6节点集群。
(1)sentinel哨兵
/usr/redis-6.0.3/src/redis-sentinel /usr/redis-6.0.3/sentinel2.conf &
sentinel2.conf配置:
坑1:master节点也会在故障转移后成为从节点,也需要配置masterauth
当kill master进程之后,经过sentinel选举,slave成为了新的master,再次启动原master,提示如下错误:
原因是此时的master再次启动已经是slave了,需要向现在的新master输入密码,所以需要在master.conf
中配置:
坑2:哨兵配置文件要暴露客户端可以访问到的master地址
在 sentinel.conf 配置文件的 sentinel monitor mymaster 122.xx.xxx.xxx 6379 2 中,配置该哨兵对应的master名字、master地址和端口,以及达到多少个哨兵选举通过认为master挂掉。其中master地址要站在redis访问者(也就是客户端)的角度、配置访问者能访问的地址,例如sentinel与master在一台服务器(122.xx.xxx.xxx)上,那么相对sentinel其master在本机也就是127.0.0.1上,这样 sentinel monitor mymaster 127.0.0.1 6379 2 逻辑上没有问题,但是如果另外服务器上的springboot通过lettuce访问这个redis哨兵,则得到的master地址为127.0.0.1,也就是springboot所在服务器本机,这显然就有问题了。
附springboot2.1 redis哨兵配置:
坑3:要注意配置文件.conf会被哨兵修改
redis-cli -h localhost -p 26379 ,可以登到sentinel上用info命令查看一下哨兵的信息。
曾经遇到过这样一个问题,大致的信息如下
slaves莫名其妙多了一个,master的地址也明明改了真实对外的地址,这里又变成127.0.0.1 !
最后,把5个redis进程都停掉,逐个检查配置文件,发现redis的配置文件在主从哨兵模式会被修改,master的配置文件最后边莫名其妙多了一行replicaof 127.0.0.1 7001, 怀疑应该是之前配置错误的时候(见坑2)被哨兵动态加上去的! 总之,实践中一定要多注意配置文件的变化。
(2)集群
当数据量大到一定程度,比如几十上百G,哨兵模式不够用了需要做水平拆分,早些年是使用codis,twemproxy这些第三方中间件来做分片的,即 客户端 -> 中间件 -> Redis server 这样的模式,中间件使用一致性Hash算法来确定key在哪个分片上。后来Redis官方提供了方案,大家就都采用官方的Redis Cluster方案了。
Redis Cluster从逻辑上分16384个hash slot,分片算法是 CRC16(key) mod 16384 得到key应该对应哪个slot,据此判断这个slot属于哪个节点。
每个节点可以设置1或多个从节点,常用的是3主节点3从节点的方案。
reshard,重新分片,可以指定从哪几个节点移动一些hash槽到另一个节点去。重新分片的过程对客户端透明,不影响线上业务。
搭建Redis cluster
redis.conf文件关键的几个配置:
启动6个集群节点
[root@VM_0_11_centos redis-6.0.3]# ps -ef|grep redis
root 5508 1 0 21:25 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7001 [cluster]
root 6903 1 0 21:32 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7002 [cluster]
root 6939 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7003 [cluster]
root 6966 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7004 [cluster]
root 6993 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7005 [cluster]
root 7015 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7006 [cluster]
这时候这6个节点还是独立的,要把他们配置成集群:
说明: -a xxxx 是因为笔者在redis.conf中配置了requirepass xxxx密码,然后 --cluster-replicas 1 中的1表示每个master节点有1个从节点。
上述命令执行完以后会有一个询问: Can I set the above configuration? yes同意自动做好的分片即可。
最后 All 16384 slots covered. 表示集群中16384个slot中的每一个都有至少有1个master节点在处理,集群启动成功。
查看集群状态:
坑1:暴露给客户端的节点地址不对
使用lettuce连接发现连不上,查看日志 Connection refused: no further information: /127.0.0.1:7002 ,跟之前哨兵配置文件sentinel.conf里边配置master地址犯的错误一样,集群启动的时候带的地址应该是提供给客户端访问的地址。
我们要重建集群:先把6个redis进程停掉,然后删除 nodes-7001.conf 这些节点配置文件,删除持久化文件 mp.rdb 、 appendonly.aof ,重新启动6个进程,在重新建立集群:
然后,还是连不上,这次报错 connection timed out: /172.xx.0.xx:7004 ,发现连到企鹅云服务器的内网地址上了!
解决办法,修改每个节点的redis.conf配置文件,找到如下说明:
所以增加配置:
然后再重新构建集群,停进程、改配置、删除节点文件和持久化文件、启动进程、配置集群。。。再来一套(累死了)
重新使用Lettuce测试,这次终于连上了!
坑2:Lettuce客户端在master节点故障时没有自动切换到从节点
name这个key在7002上,kill这个进程模拟master下线,然后Lettuce一直重连。我们期望的是应该能自动切换到其slave 7006上去,如下图:
重新启动7002进程,
7006已成为新master,7002成为它的slave,然后Lettuce也能连接上了。
解决办法,修改Lettuce的配置:
笔者用的是springboot 2.1 spring-boot-starter-data-redis 默认的Lettuce客户端,当使用Redis cluster集群模式时,需要配置一下 RedisConnectionFactory 开启自适应刷新来做故障转移时的自动切换从节点进行连接。
重新测试:停掉master 7006,这次Lettuce可以正常切换连到7002slave上去了。(仍然会不断的在日志里报连接错误,因为需要一直尝试重连7006,但因为有7002从节点顶上了、所以应用是可以正常使用的)
Redis不保证数据的强一致性
Redis并不保证数据的强一致性,也就是取CAP定理中的AP
关于一致性Hash算法,可以参考 一致性Hash算法 - (jianshu.com)
Redis cluster使用的是hash slot算法,跟一致性Hash算法不太一样,固定16384个hash槽,然后计算key落在哪个slot里边(计算key的CRC16值再对16384取模),key找的是slot而不是节点,而slot与节点的对应关系可以通过reshard改变并通过gossip协议扩散到集群中的每一个节点、进而可以为客户端获知,这样key的节点寻址就跟具体的节点个数没关系了。也同样解决了普通hash取模算法当节点个数发生变化时,大量key对应的寻址都发生改动导致缓存失效的问题。
比如集群增加了1个节点,这时候如果不做任何操作,那么新增加的这个节点上是没有slot的,所有slot都在原来的节点上且对应关系不变、所以没有因为节点个数变动而缓存失效,当reshard一部分slot到新节点后,客户端获取到新迁移的这部分slot与新节点的对应关系、寻址到新节点,而没迁移的slot仍然寻址到原来的节点。
关于热迁移,猜想,内部应该是先做复制迁移,等迁移完了,再切换slot与节点的对应关系,复制没有完成之前仍按照原来的slot与节点对应关系去原节点访问。复制结束之后,再删除原节点上已经迁移的slot所对应的key。
与哨兵模式比较类似,当1个节点发现某个master节点故障了、会对这个故障节点进行pfail主观宕机,然后会通过gossip协议通知到集群中的其他节点、其他节点也执行判断pfail并gossip扩散广播这一过程,当超过半数节点pfail时那么故障节点就是fail客观宕机。接下来所有的master节点会在故障节点的从节点中选出一个新的主节点,此时所有的master节点中超过半数的都投票选举了故障节点的某个从节点,那么这个从节点当选新的master节点。
所有节点都持有元数据,节点之间通过gossip这种二进制协议进行通信、发送自己的元数据信息给其他节点、故障检测、集群配置更新、故障转移授权等等。
这种去中心化的分布式节点之间内部协调,包括故障识别、故障转移、选主等等,核心在于gossip扩散协议,能够支撑这样的广播协议在于所有的节点都持有一份完整的集群元数据,即所有的节点都知悉当前集群全局的情况。
Redis高可用方案 - (jianshu.com)
面试题:Redis 集群模式的工作原理能说一下么 - 云+社区 - 腾讯云 (tencent.com)
深度图解Redis Cluster原理 - detectiveHLH - 博客园 (cnblogs.com)
Redis学习笔记之集群重启和遇到的坑-阿里云开发者社区 (aliyun.com)
云服务器Redis集群部署及客户端通过公网IP连接问题
Ⅶ 分布式系统常用的一致性算法有哪些
在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin)、哈希算法(HASH)、最少连接算法(Least Connection)、响应速度算法(Response Time)、加权法(Weighted )等。其中哈希算法是最为常用的算法. 典型的应用场景是: 有N台服务器提供缓存服务,需要对服务器进行负载均衡,将请求平均分发到每台服务器上,每台机器负责1/N的服务。 常用的算法是对hash结果取余数 (hash() mod N):对机器编号从0到N-1,按照自定义的hash()算法,对每个请求的hash()值按N取模,得到余数i,然后将请求分发到编号为i的机器。但这样的算法方法存在致命问题,如果某一台机器宕机,那么应该落在该机器的请求就无法得到正确的处理,这时需要将当掉的服务器从算法从去除,此时候会有(N-1)/N的服务器的缓存数据需要重新进行计算;如果新增一台机器,会有N /(N+1)的服务器的缓存数据需要进行重新计算。对于系统而言,这通常是不可接受的颠簸(因为这意味着大量缓存的失效或者数据需要转移)。那么,如何设计一个负载均衡策略,使得受到影响的请求尽可能的少呢? 在Memcached、Key-Value Store、Bittorrent DHT、LVS中都采用了Consistent Hashing算法,可以说Consistent Hashing 是分布式系统负载均衡的首选算法。 1、Consistent Hashing算法描述 下面以Memcached中的Consisten Hashing算法为例说明。 由于hash算法结果一般为unsigned int型,因此对于hash函数的结果应该均匀分布在[0,232-1]间,如果我们把一个圆环用232 个点来进行均匀切割,首先按照hash(key)函数算出服务器(节点)的哈希值, 并将其分布到0~232的圆上。 用同样的hash(key)函数求出需要存储数据的键的哈希值,并映射到圆上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器(节点)上。 Consistent Hashing原理示意图 新增一个节点的时候,只有在圆环上新增节点逆时针方向的第一个节点的数据会受到影响。删除一个节点的时候,只有在圆环上原来删除节点顺时针方向的第一个节点的数据会受到影响,因此通过Consistent Hashing很好地解决了负载均衡中由于新增节点、删除节点引起的hash值颠簸问题。 Consistent Hashing添加服务器示意图 虚拟节点(virtual nodes):之所以要引进虚拟节点是因为在服务器(节点)数较少的情况下(例如只有3台服务器),通过hash(key)算出节点的哈希值在圆环上并不是均匀分布的(稀疏的),仍然会出现各节点负载不均衡的问题。虚拟节点可以认为是实际节点的复制品(replicas),本质上与实际节点实际上是一样的(key并不相同)。引入虚拟节点后,通过将每个实际的服务器(节点)数按照一定的比例(例如200倍)扩大后并计算其hash(key)值以均匀分布到圆环上。在进行负载均衡时候,落到虚拟节点的哈希值实际就落到了实际的节点上。由于所有的实际节点是按照相同的比例复制成虚拟节点的,因此解决了节点数较少的情况下哈希值在圆环上均匀分布的问题。 虚拟节点对Consistent Hashing结果的影响 从上图可以看出,在节点数为10个的情况下,每个实际节点的虚拟节点数为实际节点的100-200倍的时候,结果还是很均衡的。 第3段中有这些文字:“但这样的算法方法存在致命问题,如果某一台机器宕机,那么应该落在该机器的请求就无法得到正确的处理,这时需要将当掉的服务器从算法从去除,此时候会有(N-1)/N的服务器的缓存数据需要重新进行计算;” 为何是 (N-1)/N 呢?解释如下: 比如有 3 台机器,hash值 1-6 在这3台上的分布就是: host 1: 1 4 host 2: 2 5 host 3: 3 6 如果挂掉一台,只剩两台,模数取 2 ,那么分布情况就变成: host 1: 1 3 5 host 2: 2 4 6 可以看到,还在数据位置不变的只有2个: 1,2,位置发生改变的有4个,占共6个数据的比率是 4/6 = 2/3这样的话,受影响的数据太多了,势必太多的数据需要重新从 DB 加载到 cache 中,严重影响性能 【consistent hashing 的办法】 上面提到的 hash 取模,模数取的比较小,一般是负载的数量,而 consistent hashing 的本质是将模数取的比较大,为 2的32次方减1,即一个最大的 32 位整数。然后,就可以从容的安排数据导向了,那个图还是挺直观的。 以下部分为一致性哈希算法的一种PHP实现。点击下载
Ⅷ 如何保证数据库缓存的最终一致性
对于互联网业务来说,传统的直接访问数据库方式,主要通过数据分片、一主多从等方式来扛住读写流量,但随着数据量的积累和流量的激增,仅依赖数据库来承接所有流量,不仅成本高、效率低、而且还伴随着稳定性降低的风险。
鉴于大部分业务通常是读多写少(读取频率远远高于更新频率),甚至存在读操作数量高出写操作多个数量级的情况。因此, 在架构设计中,常采用增加缓存层来提高系统的响应能力 ,提升数据读写性能、减少数据库访问压力,从而提升业务的稳定性和访问体验。
根据 CAP 原理,分布式系统在可用性、一致性和分区容错性上无法兼得,通常由于分区容错无法避免,所以一致性和可用性难以同时成立。对于缓存系统来说, 如何保证其数据一致性是一个在应用缓存的同时不得不解决的问题 。
需要明确的是,缓存系统的数据一致性通常包括持久化层和缓存层的一致性、以及多级缓存之间的一致性,这里我们仅讨论前者。持久化层和缓存层的一致性问题也通常被称为双写一致性问题,“双写”意为数据既在数据库中保存一份,也在缓存中保存一份。
对于一致性来说,包含强一致性和弱一致性 ,强一致性保证写入后立即可以读取,弱一致性则不保证立即可以读取写入后的值,而是尽可能的保证在经过一定时间后可以读取到,在弱一致性中应用最为广泛的模型则是最终一致性模型,即保证在一定时间之后写入和读取达到一致的状态。对于应用缓存的大部分场景来说,追求的则是最终一致性,少部分对数据一致性要求极高的场景则会追求强一致性。
为了达到最终一致性,针对不同的场景,业界逐步形成了下面这几种应用缓存的策略。
— 1 —
Cache-Aside
Cache-Aside 意为旁路缓存模式,是应用最为广泛的一种缓存策略。下面的图示展示了它的读写流程,来看看它是如何保证最终一致性的。在读请求中,首先请求缓存,若缓存命中(cache hit),则直接返回缓存中的数据;若缓存未命中(cache miss),则查询数据库并将查询结果更新至缓存,然后返回查询出的数据(demand-filled look-aside )。在写请求中,先更新数据库,再删除缓存(write-invalidate)。
1、为什么删除缓存,而不是更新缓存?
在 Cache-Aside 中,对于读请求的处理比较容易理解,但在写请求中,可能会有读者提出疑问,为什么要删除缓存,而不是更新缓存?站在符合直觉的角度来看,更新缓存是一个容易被理解的方案,但站在性能和安全的角度,更新缓存则可能会导致一些不好的后果。
首先是性能 ,当该缓存对应的结果需要消耗大量的计算过程才能得到时,比如需要访问多张数据库表并联合计算,那么在写操作中更新缓存的动作将会是一笔不小的开销。同时,当写操作较多时,可能也会存在刚更新的缓存还没有被读取到,又再次被更新的情况(这常被称为缓存扰动),显然,这样的更新是白白消耗机器性能的,会导致缓存利用率不高。
而等到读请求未命中缓存时再去更新,也符合懒加载的思路,需要时再进行计算。删除缓存的操作不仅是幂等的,可以在发生异常时重试,而且写-删除和读-更新在语义上更加对称。
其次是安全 ,在并发场景下,在写请求中更新缓存可能会引发数据的不一致问题。参考下面的图示,若存在两个来自不同线程的写请求,首先来自线程 1 的写请求更新了数据库(step 1),接着来自线程 2 的写请求再次更新了数据库(step 3),但由于网络延迟等原因,线程 1 可能会晚于线程 2 更新缓存(step 4 晚于 step 3),那么这样便会导致最终写入数据库的结果是来自线程 2 的新值,写入缓存的结果是来自线程 1 的旧值,即缓存落后于数据库,此时再有读请求命中缓存(step 5),读取到的便是旧值。
2、为什么先更新数据库,而不是先删除缓存?
另外,有读者也会对更新数据库和删除缓存的时序产生疑问,那么为什么不先删除缓存,再更新数据库呢?在单线程下,这种方案看似具有一定合理性,这种合理性体现在删除缓存成功。
但更新数据库失败的场景下,尽管缓存被删除了,下次读操作时,仍能将正确的数据写回缓存,相对于 Cache-Aside 中更新数据库成功,删除缓存失败的场景来说,先删除缓存的方案似乎更合理一些。那么,先删除缓存有什么问题呢?
问题仍然出现在并发场景下,首先来自线程 1 的写请求删除了缓存(step 1),接着来自线程 2 的读请求由于缓存的删除导致缓存未命中,根据 Cache-Aside 模式,线程 2 继而查询数据库(step 2),但由于写请求通常慢于读请求,线程 1 更新数据库的操作可能会晚于线程 2 查询数据库后更新缓存的操作(step 4 晚于 step 3),那么这样便会导致最终写入缓存的结果是来自线程 2 中查询到的旧值,而写入数据库的结果是来自线程 1 的新值,即缓存落后于数据库,此时再有读请求命中缓存( step 5 ),读取到的便是旧值。
另外,先删除缓存,由于缓存中数据缺失,加剧数据库的请求压力,可能会增大缓存穿透出现的概率。
3、如果选择先删除缓存,再更新数据库,那如何解决一致性问题呢?
为了避免“先删除缓存,再更新数据库”这一方案在读写并发时可能带来的缓存脏数据,业界又提出了延时双删的策略,即在更新数据库之后,延迟一段时间再次删除缓存,为了保证第二次删除缓存的时间点在读请求更新缓存之后,这个延迟时间的经验值通常应稍大于业务中读请求的耗时。
延迟的实现可以在代码中 sleep 或采用延迟队列。显而易见的是,无论这个值如何预估,都很难和读请求的完成时间点准确衔接,这也是延时双删被诟病的主要原因。
4、那么 Cache-Aside 存在数据不一致的可能吗?
在 Cache-Aside 中,也存在数据不一致的可能性。在下面的读写并发场景下,首先来自线程 1 的读请求在未命中缓存的情况下查询数据库(step 1),接着来自线程 2 的写请求更新数据库(step 2),但由于一些极端原因,线程 1 中读请求的更新缓存操作晚于线程 2 中写请求的删除缓存的操作(step 4 晚于 step 3),那么这样便会导致最终写入缓存中的是来自线程 1 的旧值,而写入数据库中的是来自线程 2 的新值,即缓存落后于数据库,此时再有读请求命中缓存(step 5),读取到的便是旧值。
这种场景的出现,不仅需要缓存失效且读写并发执行,而且还需要读请求查询数据库的执行早于写请求更新数据库,同时读请求的执行完成晚于写请求。足以见得,这种 不一致场景产生的条件非常严格,在实际的生产中出现的可能性较小 。
除此之外,在并发环境下,Cache-Aside 中也存在读请求命中缓存的时间点在写请求更新数据库之后,删除缓存之前,这样也会导致读请求查询到的缓存落后于数据库的情况。
虽然在下一次读请求中,缓存会被更新,但如果业务层面对这种情况的容忍度较低,那么可以采用加锁在写请求中保证“更新数据库&删除缓存”的串行执行为原子性操作(同理也可对读请求中缓存的更新加锁)。 加锁势必会导致吞吐量的下降,故采取加锁的方案应该对性能的损耗有所预期。
— 2 —
补偿机制
我们在上面提到了,在 Cache-Aside 中可能存在更新数据库成功,但删除缓存失败的场景,如果发生这种情况,那么便会导致缓存中的数据落后于数据库,产生数据的不一致的问题。
其实,不仅 Cache-Aside 存在这样的问题,在延时双删等策略中也存在这样的问题。针对可能出现的删除失败问题,目前业界主要有以下几种补偿机制。
1、删除重试机制
由于同步重试删除在性能上会影响吞吐量,所以常通过引入消息队列,将删除失败的缓存对应的 key 放入消息队列中,在对应的消费者中获取删除失败的 key ,异步重试删除。这种方法在实现上相对简单,但由于删除失败后的逻辑需要基于业务代码的 trigger 来触发 ,对业务代码具有一定入侵性。
鉴于上述方案对业务代码具有一定入侵性,所以需要一种更加优雅的解决方案,让缓存删除失败的补偿机制运行在背后,尽量少的耦合于业务代码。一个简单的思路是通过后台任务使用更新时间戳或者版本作为对比获取数据库的增量数据更新至缓存中,这种方式在小规模数据的场景可以起到一定作用,但其扩展性、稳定性都有所欠缺。
一个相对成熟的方案是基于 MySQL 数据库增量日志进行解析和消费,这里较为流行的是阿里巴巴开源的作为 MySQL binlog 增量获取和解析的组件 canal(类似的开源组件还有 Maxwell、Databus 等)。
canal sever 模拟 MySQL slave 的交互协议,伪装为 MySQL slave,向 MySQL master 发送 mp 协议,MySQL master 收到 mp 请求,开始推送 binary log 给 slave (即 canal sever ),canal sever 解析 binary log 对象(原始为 byte 流),可由 canal client 拉取进行消费,同时 canal server 也默认支持将变更记录投递到 MQ 系统中,主动推送给其他系统进行消费。
在 ack 机制的加持下,不管是推送还是拉取,都可以有效的保证数据按照预期被消费。当前版本的 canal 支持的 MQ 有 Kafka 或者 RocketMQ。另外, canal 依赖 ZooKeeper 作为分布式协调组件来实现 HA ,canal 的 HA 分为两个部分:
那么,针对缓存的删除操作便可以在 canal client 或 consumer 中编写相关业务代码来完成。这样,结合数据库日志增量解析消费的方案以及 Cache-Aside 模型,在读请求中未命中缓存时更新缓存(通常这里会涉及到复杂的业务逻辑),在写请求更新数据库后删除缓存,并基于日志增量解析来补偿数据库更新时可能的缓存删除失败问题,在绝大多数场景下,可以有效的保证缓存的最终一致性。
另外需要注意的是,还应该隔离事务与缓存,确保数据库入库后再进行缓存的删除操作。 比如考虑到数据库的主从架构,主从同步及读从写主的场景下,可能会造成读取到从库的旧数据后便更新了缓存,导致缓存落后于数据库的问题,这就要求对缓存的删除应该确保在数据库操作完成之后。所以,基于 binlog 增量日志进行数据同步的方案,可以通过选择解析从节点的 binlog,来避免主从同步下删除缓存过早的问题。
3、数据传输服务 DTS
— 3 —
Read-Through
Read-Through 意为读穿透模式,它的流程和 Cache-Aside 类似,不同点在于 Read-Through 中多了一个访问控制层,读请求只和该访问控制层进行交互,而背后缓存命中与否的逻辑则由访问控制层与数据源进行交互,业务层的实现会更加简洁,并且对于缓存层及持久化层交互的封装程度更高,更易于移植。
— 4 —
Write-Through
Write-Through 意为直写模式,对于 Write-Through 直写模式来说,它也增加了访问控制层来提供更高程度的封装。不同于 Cache-Aside 的是,Write-Through 直写模式在写请求更新数据库之后,并不会删除缓存,而是更新缓存。
这种方式的 优势在于读请求过程简单 ,不需要查询数据库更新缓存等操作。但其劣势也非常明显,除了上面我们提到的更新数据库再更新缓存的弊端之外,这种方案还会造成更新效率低,并且两个写操作任何一次写失败都会造成数据不一致。
如果要使用这种方案, 最好可以将这两个操作作为事务处理,可以同时失败或者同时成功,支持回滚,并且防止并发环境下的不一致 。另外,为了防止缓存扰动的频发,也可以给缓存增加 TTL 来缓解。
站在可行性的角度,不管是 Write-Through 模式还是 Cache-Aside 模式,理想状况下都可以通过分布式事务保证缓存层数据与持久化层数据的一致性,但在实际项目中,大多都对一致性的要求存在一些宽容度,所以在方案上往往有所折衷。
Write-Through 直写模式适合写操作较多,并且对一致性要求较高的场景,在应用 Write-Through 模式时,也需要通过一定的补偿机制来解决它的问题。首先,在并发环境下,我们前面提到了先更新数据库,再更新缓存会导致缓存和数据库的不一致,那么先更新缓存,再更新数据库呢?
这样的操作时序仍然会导致下面这样线程 1 先更新缓存,最后更新数据库的情况,即由于线程 1 和 线程 2 的执行不确定性导致数据库和缓存的不一致。这种由于线程竞争导致的缓存不一致,可以通过分布式锁解决,保证对缓存和数据库的操作仅能由同一个线程完成。对于没有拿到锁的线程,一是通过锁的 timeout 时间进行控制,二是将请求暂存在消息队列中顺序消费。
在下面这种并发执行场景下,来自线程 1 的写请求更新了数据库,接着来自线程 2 的读请求命中缓存,接着线程 1 才更新缓存,这样便会导致线程 2 读取到的缓存落后于数据库。同理,先更新缓存后更新数据库在写请求和读请求并发时,也会出现类似的问题。面对这种场景,我们也可以加锁解决。
另在,在 Write-Through 模式下,不管是先更新缓存还是先更新数据库,都存在更新缓存或者更新数据库失败的情况,上面提到的重试机制和补偿机制在这里也是奏效的。
— 5 —
Write-Behind
Write behind 意为异步回写模式,它也具有类似 Read-Through/Write-Through 的访问控制层,不同的是,Write behind 在处理写请求时,只更新缓存而不更新数据库,对于数据库的更新,则是通过批量异步更新的方式进行的,批量写入的时间点可以选在数据库负载较低的时间进行。
在 Write-Behind 模式下,写请求延迟较低,减轻了数据库的压力,具有较好的吞吐性。但数据库和缓存的一致性较弱,比如当更新的数据还未被写入数据库时,直接从数据库中查询数据是落后于缓存的。同时,缓存的负载较大,如果缓存宕机会导致数据丢失,所以需要做好缓存的高可用。显然,Write behind 模式下适合大量写操作的场景,常用于电商秒杀场景中库存的扣减。
— 6 —
Write-Around
如果一些非核心业务,对一致性的要求较弱,可以选择在 cache aside 读模式下增加一个缓存过期时间,在写请求中仅仅更新数据库,不做任何删除或更新缓存的操作,这样,缓存仅能通过过期时间失效。这种方案实现简单,但缓存中的数据和数据库数据一致性较差,往往会造成用户的体验较差,应慎重选择。
— 7 —
总结
在解决缓存一致性的过程中,有多种途径可以保证缓存的最终一致性,应该根据场景来设计合适的方案,读多写少的场景下,可以选择采用“Cache-Aside 结合消费数据库日志做补偿”的方案,写多的场景下,可以选择采用“Write-Through 结合分布式锁”的方案 ,写多的极端场景下,可以选择采用“Write-Behind”的方案。