当前位置:首页 » 文件管理 » c缓存机制

c缓存机制

发布时间: 2022-11-04 10:51:44

A. 前端浏览器缓存机制

在前端开发中,性能是一个永恒的话题,没有最好,只有更好。判断一个网站性能好坏,一个直入眼观的即是网页的反应速度,有一个方式就是使用缓存,一个优秀的缓存策略可以缩短网页请求的时间,减少延迟,并且网页可以重复利用,还可以减少带宽,降低网络负荷。

1: 为什么需要缓存?

a:缓存可以减少用户等待时间,提升用户体验

b:减少网络带宽消耗

c:降低服务器压力

Note:缓存使用不当,也会造成‘脏数据’问题

2:常见的缓存类型

强缓存 -

Expires服务器端设置,表示该资源的过期时间,会有弊端,客户端时间和服务器时间不一致的问题。

Cache-Control:max-age表示缓存资源的最大生命周期,单位是秒

所以Expires 结合 Cache-Control 一起使用,大型网站中一般比较适用

协商缓存-

Last-Modified:值为资源的最后更新时间,随服务器response返回

If-Modified-Since:通过比较两个时间来判断资源在两次请求期间是否有过修改,如果没有,则命中协商缓存

Etag:表示资源内容的唯一标识,即资源的消息摘要

If-None-Match:服务器通过比较请求头中的If-None-Match与当前资源的Etag是否一致来判断资源是否在两次请求期间有过修改

3:缓存流程图示:

a:浏览器会先检测强缓存类型(Cache-Control 或者 Expires)是否有效;命中直接浏览器本地获取缓存资源

b:未命中。服务器会根据请求头Request Header验证这个资源是否命中协商缓存,称之为HTTP二次验证,命中,服务器返回请求,但返回资源,而是告诉客户端直接中直接从浏览器缓存中获取

Note:

1.强缓存不会发生请求,协商缓存存在服务器请求

2.当协商缓存也未命中时,则服务器会将资源发送到客户端

3.F5刷新页面,会跳过强缓存

4.Ctrl+F5刷新页面,跳过强缓存和协商缓存

5.不会缓存的情况

HTTPS POST请求 根据Cookie获取认证信息 Request Header Cache-Control:no-cache, max-age=0

6.小故事大道理

上文对整个概念做了阐述,还是不够形象,我们来通过几个小故事生动理解一下:

故事一:Last-Modified

浏览器:Hi,我需要 jartto.min.js 这个文件,如果是在 Last-Modified: Fri Feb 15 2019 19:57:31 GMT 之后修改过的,请发给我。

服务器:(检查文件的修改时间)

服务器:Oh,这个文件在那个时间之后没有被修改过,你已经有最新的版本了。

浏览器:太好了,那我就显示给用户了。

故事二:ETag

浏览器:Hi,我需要 jartto.css 这个文件,有没有不匹配 3c61f-1c1-2aecb436 这个串的

服务器:(检查 ETag…)

服务器:Hey,我这里的版本也是 3c61f-1c1-2aecb436,你已经是最新的版本了

浏览器:好,那就可以使用本地缓存了

B. 浏览器的渲染过程及涉及到的缓存机制

答:dns解析-》tcp链接-》发送HTTP请求-》服务器处理请求并且返回报文-》浏览器解析渲染页面-》链接结束

是一个将网址解析成IP 地址的过程。
首先从本地域名服务器中查找,如果找不到就继续向上根域名服务器查找,直到顶级域名,这个过程中存在dns优化有的环节。当查找资源时, 会先找缓存,(浏览器缓存-》系统缓存-》路由器缓存等等),也会根据机器的负载量和距离用户的位置进行dns负载均衡。

A.客户端发送syn到服务器要求连接
B.服务端向客户端发送ack
C.客户端收到ack并确认后,向服务端发送ack,连连接建立。

tcp连接建立之后,开始通过HTTP协议传输资源,根据情况判断是否使用HTTPS,HTTP包括请求行,请求报头,请求正文(post,put客户端向服务器传输数据的情况)。keepalive什么的可以在请求头里添加。

(此处涉及强制缓存和协商缓存, 为了先讲清楚浏览器渲染过程,我把他们放在文章末尾。)

服务端接到请求开始对tcp进行处理,对http进行解析,按照报文格式封装成HTTP request对象。响应报文码(1xx:请求已接受,2XX:成功,3xx:重定向,4xx:客户端错误,5xx:服务端错误)

边解析边渲染,首先解析html,构建dom树,然后解析css,构建cssom。

我思考过很久HTML和css谁先渲染。我的理解是,不一定,看位置了,如果dom构建的过程中遇到了css的link,那就会先去加载并构建cssom,这个过程不是一次性的。 css和同步的js文件都是阻塞DOM树渲染的,但不阻塞DOM解析, 直到js加载并且执行完毕。遇到阻塞的css也会延迟js的执行和dom构建。(因为js可能会修改dom或者cssom),css同样,当cssom构建时,js也会停止被阻塞,等待cssom构建完成。

defer & async
1.正常模式
<script src="script.js"></script>
遇到这样的js标签,浏览器会立即加载并执行,不等待后续载入的文档元素。

2.async模式
<script async src="script.js"></script>
有async的js文件会和后续的DOM解析渲染并行执行,当js加载完成,立即执行,这时html解析暂停。因此不会按照标签引入顺序执行。

3.defer模式
<script defer src="script.js"></script>
有defer的js文件的加载,也会和文档的解析构建并行。这一点与async一致。
不同的是,defer的js文件加载完不会立即执行, 会等到所有文档解析完成后,DOMContentLoaded事件触发之前完成, 因此会按照引入顺序执行。

DOMContentLoaded & onload
DOM解析完(阻塞DOM的内容解析完,DOM才真正解析完)会触发DOMContentLoaded事件。如果在DOMContentLoaded之后引入css样式表,DOMContentLoaded可能无法获取样式表里的样式,此时DOM树已经构建完成,但外部css文件还没加载完成,这也是 css文件放在头部的原因

onLoad
页面的所有资源被加载以后触发onLoad事件,会在DOMContentLoaded之后触发。

这个过程中有两个重要的过成是回流和重绘。计算盒模型的大小位置还有解析颜色字体等 属性,这些都确定下来的时候开始repain,合成一个rendertree渲染树,render-tree中必须同时存在dom和cssom,浏览器开始布局并渲染到屏幕上。首次加载必然会经历回流和重绘的过程。

无论何时总会有一个初始化的页面布局伴随着一次绘制。(除非你希望你的页面是空白的:))之后,每一次改变用于构建渲染树的信息都会导致以下至少一个的行为:

部分渲染树(或者整个渲染树)需要重新分析并且节点尺寸需要重新计算。这被称为重排。注意这里至少会有一次重排-初始化页面布局。

由于节点的几何属性发生改变或者由于样式发生改变,例如改变元素背景色时,屏幕上的部分内容需要更新。这样的更新被称为重绘。

重排和重绘代价是高昂的,它们会破坏用户体验,并且让UI展示非常迟缓。

一些重排可能开销更大。想象一下渲染树,如果你直接改变body下的一个子节点,可能并不会对其它节点造成影响。但是当你给一个当前页面顶级的div添加动画或者改变它的大小,就会推动整个页面改变-听起来代价就十分高昂。

浏览器一直致力于减少这些消极的影响,浏览器会创建一个变化的队列,浏览器可以向队列添加或变更这些变化,在一个特定的时间或达到一定的数量时,执行一次重排或重绘,通过这种方式,多次重排或重绘会整合起来最终减少重排或重绘的次数,以节省浏览器渲染的开销。

所以 ,同时set和get样式是非常糟糕的做法

看到的一个答案,有可能是这个原因,但是我不确定。
开发环境会把css都打包到js里,所以要等js加载好了才有样式,因此会出现这种情况;但是在生产环境下,css会生成css文件,并插入到<style />里,因此就不会出现这种情况了。

两个优化点:css先加载,js后加载
js尽量不要修改dom树。

以下是我在OneNote的笔记,粘贴过来就会变成图片没有找到好的办法。
强制缓存和协商缓存是http请求这一步的内容。

C. Cache的的工作原理是什么

CACHE 快取

CACHE是一种加速内存或磁盘存取的装置,可将慢速磁盘上的数据拷贝至快速的磁盘进行读写动作,以提升系统响应的速度。

其运作原理在于使用较快速的储存装置保留一份从慢速储存装置中所读取数据且进行拷贝,当有需要再从较慢的储存体中读写数据时,CACHE能够使得读写的动作先在快速的装置上完成,如此会使系统的响应较为快速。

举例来说,存取内存 (RAM) 的速度较磁盘驱动器快非常多,所以我们可以将一部份的主存储器保留当成磁盘CACHE,每当有磁盘读取的需求时就把刚读取的数据拷贝一份放在CACHE内存中,如果系统继续要求读取或写入同一份数据或同一扇区 (sector) 时,系统可以直接从内存中的CACHE部分作读写的动作,这样系统对磁盘的存取速度感觉上会快许多。

同样的,静态内存 (SRAM) 比动态内存 (DRAM) 的读写速度快,使用些静态内存作为动态内存的CACHE,也可以提升读写的效率。

内存不全部使用SRAM取代DRAM 的原因,是因为SRAM的成本较DRAM高出许多。

使用CACHE的问题是写入CACHE中的数据如果不立即写回真正的储存体,一但电源中断或其它意外会导致数据流失;但若因而每次都将数据写写回真正的储存体,又将会使得CACHE只能发挥加速读取的功能,而不能加速写入的速度,这样的状况使得CACHE写入的方式分为两类:

1. Write-Through: 每次遇到写入时就将数据写入真正的储存体。

2. Write-Back: 遇到写入时不一定回写,只纪录在CACHE内,并将该份数据标示为已更改(dirty),等系统有空或等到一定的时间后再将数据写回真正的储存体,这种做法是承担一点风险来换取效率。

由于很多时候系统不只有重复读写同一块区域,使用两组各自独立的CACHE效能通常比只使用一组较佳,这称为 2-Ways Associate,同样的,使用四组CACHE则称为4ways Associate,但更多组的CACHE会使得算法相对的复杂许多。

CACHE的效能依算法的使用而有好坏之分,估量的单位通常使用命中率 (hits),命中率较高者较佳。

新式的CPU上也有内建的CACHE,称为 LEVEL 1 (L1) 快取, 由于与 CPU 同频率运作,能比在主机板上的 LEVEL 2 (L2) CACHE提供更快速的存取效能。

D. c语言的输入缓冲怎么回事,哪里有详细介绍啊

缓冲是标准C中的标准I/O里的机制,标准库里的I/O语句为了提高读写的效率,在实际读写之前将数据保存到一段内存中,这段内存就叫缓冲,分全缓冲,行缓冲两种,全缓冲在缓冲的内存满了之后做实际的读写,行缓冲在遇到换行符之后做实际的读写,unix高级环境编程里第五章里有详细的说明,或者网络也有

E. 什么叫二级缓存

CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。

缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。

正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。

最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。

随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。

二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。

CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。

为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。

CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高

F. C语言求助……

好像没有吧
ret=scanf("%d,%d",&a,&b)
这句编译系统当做逻辑表达式
只要输入的是int型的ret的值都为1
即真,否则别的类型假,ret的值只能为0或1
所以这句while(ret!=2)好像没什么意义吧,

G. c语言getchar()能接受多个字符

getchar函数每次只从缓冲区中接受一个字符。


getchar有一个int型的返回值。

当程序调用getchar时,程序就等着用户按键,用户输入的字符被存放在键盘缓冲区中,直到用户按回车为止(回车字符也放在缓冲区中)。当用户键入回车之后,getchar才开始从stdin流中每次读入一个字符,getchar函数的返回值是用户输入的第一个字符的ASCⅡ码,如出错返回-1,且将用户输入的字符回显到屏幕。


如用户在按回车之前输入了不止一个字符,其他字符会保留在键盘缓存区中,等待后续getchar调用读取。也就是说,后续的getchar调用不会等待用户按键,而直接读取缓冲区中的字符,直到缓冲区中的字符读完为后,才等待用户按键。


举例如下:

charch;
ch=getchar();//接收用户输入的第一个字符,并赋值给字符变量ch返回值为输入第一个字符的ASCII码

H. 如何理解c/c++和php语言的区别

一、编程语言

1.根据熟悉的语言,谈谈两种语言的区别?

主要浅谈下C/C++和PHP语言的区别:

1)PHP弱类型语言,一种脚本语言,对数据的类型不要求过多,较多的应用于Web应用开发,现在好多互联网开发公司的主流web后台开发语言,主要框架为mvc模型,如smarty,yaf,升级的PHP7速度较快,对服务器的压力要小很多,在新浪微博已经有应用,对比很明显。

2)C/C++开发语言,C语言更偏向硬件底层开发,C++语言是目前为止我认为语法内容最多的一种语言。C/C++在执行速度上要快很多,毕竟其他类型的语言大都是C开发的,更多应用于网络编程和嵌入式编程。

2.volatile是干啥用的,(必须将cpu的寄存器缓存机制回答得很透彻),使用实例有哪些?(重点)

1) 访问寄存器比访问内存单元要快,编译器会优化减少内存的读取,可能会读脏数据。声明变量为volatile,编译器不再对访问该变量的代码优化,仍然从内存读取,使访问稳定。

总结:volatile关键词影响编译器编译的结果,用volatile声明的变量表示该变量随时可能发生变化,与该变量有关的运算,不再编译优化,以免出错。

2)使用实例如下( 区分C程序员和嵌入式系统程序员的最基本的问题。 ):

并行设备的硬件寄存器(如:状态寄存器)
一个中断服务子程序中会访问到的非自动变量(Non-automatic variables)
多线程应用中被几个任务共享的变量
3)一个参数既可以是const还可以是volatile吗?解释为什么。

可以。一个例子是只读的状态寄存器。它是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。
4)一个指针可以是volatile 吗?解释为什么。
可以。尽管这并不是很常见。一个例子当中断服务子程序修改一个指向一个buffer的指针时。

下面的函数有什么错误:
int square(volatile int *ptr) {
return *ptr * *ptr;
}
下面是答案:
这段代码有点变态。这段代码的目的是用来返指针*ptr指向值的平方,但是,由于*ptr指向一个volatile型参数,编译器将产生类似下面的代码:
int square(volatile int *ptr){
int a,b;
a = *ptr;
b = *ptr;
return a * b;
}
由于*ptr的值可能被意想不到地改变,因此a和b可能是不同的。结果,这段代码可能并不是你所期望的平方值!正确的代码如下:
long square(volatile int *ptr){
int a;
a = *ptr;
return a * a;
}

更多linux内核视频教程文本资料免费获取后台私信【 内核 】。

3.static const等等的用法,(能说出越多越好)(重点)

² 首先说说const的用法(绝对不能说是常数)

1)在定义的时候必须进行初始化

2)指针可以是const 指针,也可以是指向const对象的指针

3)定义为const的形参,即在函数内部是不能被修改的

4)类的成员函数可以被声明为正常成员函数,不能修改类的成员变量

5)类的成员函数可以返回的是常对象,即被const声明的对象

6)类的成员变量是指成员变量不能在声明时初始化,必须在构造函数的列表里进行初始化

(注:千万不要说const是个常数,会被认为是外行人的!!!!哪怕说个只读也行)

下面的声明都是什么意思?
const int a; a是一个正常整型数
int const a; a是一个正常整型数
const int *a; a是一个指向常整型数的指针,整型数是不可修改的,但指针可以
int * const a; a为指向整型数的常指针,指针指向的整型数可以修改,但指针是不可修改的
int const * a const; a是一个指向常整型数的常指针,指针指向的整型数是不可修改的,同时指针也是不可修改的
通过给优化器一些附加的信息,使用关键字const也许能产生更紧凑的代码。合理地使用关键字const可以使编译器很自然地保护那些不希望被改变的参数,防止其被无意的代码修改。简而言之,这样可以减少bug的出现。

Const如何做到只读?

这些在编译期间完成,对于内置类型,如int, 编译器可能使用常数直接替换掉对此变量的引用。而对于结构体不一定。

² 再说说static的用法(三个明显的作用一定要答出来)

1)在函数体内,一个被声明为静态的变量在这一函数被调用过程中维持其值不变。
2)在模块内(但在函数体外),一个被声明为静态的变量可以被模块内所用函数访问,但不能被模块外其它函数访问。它是一个本地的全局变量。
3)在模块内,一个被声明为静态的函数只可被这一模块内的其它函数调用。那就是,这个函数被限制在声明它的模块的本地范围内使用

4)类内的static成员变量属于整个类所拥有,不能在类内进行定义,只能在类的作用域内进行定义

5)类内的static成员函数属于整个类所拥有,不能包含this指针,只能调用static成员函数

static全局变量与普通的全局变量有什么区别?static局部变量和普通局部变量有什么区别?static函数与普通函数有什么区别?

static全局变量与普通的全局变量有什么区别:static全局变量只初始化一次,防止在其他文件单元中被引用;
static局部变量和普通局部变量有什么区别:static局部变量只被初始化一次,下一次依据上一次结果值;
static函数与普通函数有什么区别:static函数在内存中只有一份,普通函数在每个被调用中维持一份拷贝

4.extern c 作用

告诉编译器该段代码以C语言进行编译。

5.指针和引用的区别

1)引用是直接访问,指针是间接访问。

2)引用是变量的别名,本身不单独分配自己的内存空间,而指针有自己的内存空间

3)引用绑定内存空间(必须赋初值),是一个变量别名不能更改绑定,可以改变对象的值。

总的来说:引用既具有指针的效率,又具有变量使用的方便性和直观性

6. 关于静态内存分配和动态内存分配的区别及过程

1) 静态内存分配是在编译时完成的,不占用CPU资源;动态分配内存运行时完成,分配与释放需要占用CPU资源;

2)静态内存分配是在栈上分配的,动态内存是堆上分配的;

3)动态内存分配需要指针或引用数据类型的支持,而静态内存分配不需要;

4)静态内存分配是按计划分配,在编译前确定内存块的大小,动态内存分配运行时按需分配。

5)静态分配内存是把内存的控制权交给了编译器,动态内存把内存的控制权交给了程序员;

6)静态分配内存的运行效率要比动态分配内存的效率要高,因为动态内存分配与释放需要额外的开销;动态内存管理水平严重依赖于程序员的水平,处理不当容易造成内存泄漏。

7. 头文件中的 ifndef/define/endif 干什么用

预处理,防止头文件被重复使用,包括pragma once都是这样的

8. 宏定义求两个元素的最小值

#define MIN(A,B) ((A) next;

}

else

{

return NULL;

}

}

Node* pFind = pHead;

while (pCurrent) {

pFind = pFind->next;

pCurrent = pCurrent->next;

}

return pFind;

}

2. 给定一个单向链表(长度未知),请遍历一次就找到中间的指针,假设该链表存储在只读存储器,不能被修改

设置两个指针,一个每次移动两个位置,一个每次移动一个位置,当第一个指针到达尾节点时,第二个指针就达到了中间节点的位置

处理链表问题时,”快行指针“是一种很常见的技巧,快行指针指的是同时用两个指针来迭代访问链表,只不过其中一个比另一个超前一些。快指针往往先行几步,或与慢指针相差固定的步数。

node *create() {

node *p1, *p2, *head;

int cycle = 1, x;

head = (node*)malloc(sizeof(node));

p1 = head;

while (cycle)

{

cout > x;

if (x != 0)

{

p2 = (node*)malloc(sizeof(node));

p2->data = x;

p1->next = p2;

p1 = p2;

}

else

{

cycle = 0;

}

}

head = head->next;

p1->next = NULL;

return head;

}

void findmid(node* head) {

node *p1, *p2, *mid;

p1 = head;

p2 = head;

while (p1->next->next != NULL)

{

p1 = p1->next->next;

p2 = p2->next;

mid = p2;

}

}

3. 将一个数组生成二叉排序树

排序,选数组中间的一个元素作为根节点,左边的元素构造左子树,右边的节点构造有子树。

4. 查找数组中第k大的数字?

因为快排每次将数组划分为两组加一个枢纽元素,每一趟划分你只需要将k与枢纽元素的下标进行比较,如果比枢纽元素下标大就从右边的子数组中找,如果比枢纽元素下标小从左边的子数组中找,如果一样则就是枢纽元素,找到,如果需要从左边或者右边的子数组中再查找的话,只需要递归一边查找即可,无需像快排一样两边都需要递归,所以复杂度必然降低。

最差情况如下:假设快排每次都平均划分,但是都不在枢纽元素上找到第k大第一趟快排没找到,时间复杂度为O(n),第二趟也没找到,时间复杂度为O(n/2),第k趟找到,时间复杂度为O(n/2k),所以总的时间复杂度为O(n(1+1/2+....+1/2k))=O(n),明显比冒泡快,虽然递归深度是一样的,但是每一趟时间复杂度降低。

5. 红黑树的定义和解释?B树的基本性质?

红黑树:

性质1. 节点是红色或黑色。
性质2. 根节点是黑色。
性质3. 每个叶子结点都带有两个空的黑色结点(被称为黑哨兵),如果一个结点n的只有一个左孩子,那么n的右孩子是一个黑哨兵;如果结点n只有一个右孩子,那么n的左孩子是一个黑哨兵。
性质4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

B树:

1.所有非叶子结点至多拥有两个儿子(Left和Right);

2.所有结点存储一个关键字;

3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

6. 常见的加密算法?

对称式加密就是加密和解密使用同一个密钥。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用。
DES:对称算法,数据加密标准,速度较快,适用于加密大量数据的场合;
MD5的典型应用是对一段Message产生fingerprint(指纹),以防止被“篡改”。
RSA是第一个既能用于数据加密也能用于数字签名的算法。

7. https?

HTTP下加入SSL层,HTTPS的安全基础是SSL。

8.有一个IP库,给你一个IP,如何能够快速的从中查找到对应的IP段?不用数据库如何实现?要求省空间
9.简述一致性hash算法。

1)首先求memcached服务器(节点)的哈希值,并将其配置到0 232的圆(continuum)。

2)然后采用同样的方法求出存储数据的键的哈希值,并映射到相同的圆上。

3)然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。如果超过232仍然找不到服务器,就会保存到第一台memcached服务器上。
11.描述一种hash table的实现方法

1) 除法散列法: p ,令 h(k ) = k mod p ,这里, p 如果选取的是比较大的素数,效果比较好。而且此法非常容易实现,因此是最常用的方法。最直观的一种,上图使用的就是这种散列法,公式: index = value % 16,求模数其实是通过一个除法运算得到的。

2) 平方散列法 :求index频繁的操作,而乘法的运算要比除法来得省时。公式: index = (value * value) >> 28 (右移,除以2^28。记法:左移变大,是乘。右移变小,是除)

3) 数字选择法:如果关键字的位数比较多,超过长整型范围而无法直接运算,可以选择其中数字分布比较均匀的若干位,所组成的新的值作为关键字或者直接作为函数值。

4) 斐波那契(Fibonacci)散列法:平方散列法的缺点是显而易见的,通过找到一个理想的乘数index = (value * 2654435769) >> 28

冲突处理:令数组元素个数为 S ,则当 h(k) 已经存储了元素的时候,依次探查 (h(k)+i) mod S , i=1,2,3…… ,直到找到空的存储单元为止(或者从头到尾扫描一圈仍未发现空单元,这就是哈希表已经满了,发生了错误。当然这是可以通过扩大数组范围避免的)。

12、各类树结构的实现和应用

13、hash,任何一个技术面试官必问(例如为什么一般hashtable的桶数会取一个素数?如何有效避免hash结果值的碰撞)

不选素数的话可能会造成hash出值的范围和原定义的不一致

14.什么是平衡二叉树?

左右子树都是平衡二叉树,而且左右子树的深度差值的约对值不大于1。

15.数组和链表的优缺点

数组,在内存上给出了连续的空间。链表,内存地址上可以是不连续的,每个链表的节点包括原来的内存和下一个节点的信息(单向的一个,双向链表的话,会有两个)。

数组优于链表的:

A. 内存空间占用的少。

B. 数组内的数据可随机访问,但链表不具备随机访问性。

C. 查找速度快

链表优于数组的:

A. 插入与删除的操作方便。

B. 内存地址的利用率方面链表好。

C. 方便内存地址扩展。

17.最小堆插入,删除编程实现

18. 4G的long型整数中找到一个最大的,如何做?

每次从磁盘上尽量多读一些数到内存区,然后处理完之后再读入一批。减少IO次数,自然能够提高效率。分批读入选取最大数,再对缓存的最大数进行快排。

19. 有千万个string在内存怎么高速查找,插入和删除?

对千万个string做hash,可以实现高速查找,找到了,插入和删除就很方便了。关键是如何做hash,对string做hash,要减少碰撞频率。

在内存中维护一个大小为10000的最小堆,每次从文件读一个数,与最小堆的堆顶元素比较,若比堆顶元素大,则替换掉堆顶元素,然后调整堆。最后剩下的堆内元素即为最大的1万个数,算法复杂度为O(NlogN)

(1)全局洗牌法

a)首先生成一个数组,大小为54,初始化为1~54

b)按照索引1到54,逐步对每一张索引牌进行洗牌,首先生成一个余数 value = rand %54,那么我们的索引牌就和这个余数牌进行交换处理

c)等多索引到54结束后,一副牌就洗好了

(2)局部洗牌法:索引牌从1开始,到54结束。这一次索引牌只和剩下还没有洗的牌进行交换, value = index + rand() %(54 - index)

算法复杂度是O(n)

22.请分别用递归和非递归方法,先序遍历二叉树

24.其他各种排序方法

25.哈希表冲突解决方法?

常见的hash算法如下:

解决冲突的方法:

也叫散列法,主要思想是当出现冲突的时候,以关键字的结果值作为key值输入,再进行处理,依次直到冲突解决

线性地址再散列法

当冲突发生时,找到一个空的单元或者全表

二次探测再散列

冲突发生时,在表的左右两侧做跳跃式的探测

伪随机探测再散列

同时构造不同的哈希函数

将同样的哈希地址构造成一个同义词的链表

建立一个基本表和溢出区,凡是和基本元素发生冲突都填入溢出区

六、系统架构

1.设计一个服务,提供递增的SessionID服务,要求保证服务的高可靠性,有哪些方案?集中式/非集中式/分布式

2.多台服务器要执行计划任务,但只有拿到锁的任务才能执行,有一个中心服务器来负责分配锁,但要保证服务的高可靠性。

3.如何有效的判断服务器是否存活?服务器是否踢出集群的决策如何产生?

4.两个服务器如何在同一时刻获取同一数据的时候保证只有一个服务器能访问到数据?

可以采用队列进行处理,写一个队列接口保证同一时间只有一个进程能够访问到数据,或者对于存取数据库的来说,数据库也是可以加锁处理的

5. 编写高效服务器程序,需要考虑的因素

性能对服务器程序来说是至关重要的了,毕竟每个客户都期望自己的请求能够快速的得到响应并处理。那么影响服务器性能的首要因素应该是:

(1)系统的硬件资源,比如说CPU个数,速度,内存大小等。不过由于硬件技术的飞速发展,现代服务器都不缺乏硬件资源。因此,需要考虑的主要问题是如何从“软环境”来提升服务器的性能。

服务器的”软环境“

(2)一方面是指系统的软件资源,比如操作系统允许用户打开的最大文件描述符数量

(3)另一方面指的就是服务器程序本身,即如何从编程的角度来确保服务器的性能。

主要就要考虑大量并发的处理这涉及到使用进程池或线程池实现高效的并发模式(半同步/半异步和领导者/追随者模式),以及高效的逻辑处理方式--有限状态机内存的规划使用比如使用内存池,以空间换时间,被事先创建好,避免动态分配,减少了服务器对内核的访问频率,数据的复制,服务器程序还应该避免不必要的数据复制,尤其是当数据复制发生在用户空间和内核空间之间时。如果内核可以直接处理从socket或者文件读入的数据,则应用程序就没必要将这些数据从内核缓冲区拷贝到应用程序缓冲区中。这里所谓的“直接处理”,是指应用程序不关心这些数据的具体内容是什么,不需要对它们作任何分析。比如说ftp服务器,当客户请求一个文件时,服务器只需要检测目标文件是否存在,以及是否有权限读取就可以了,不需要知道这个文件的具体内容,这样的话ftp服务器就不需要把目标文件读入应用程序缓冲区然后调用send函数来发送,而是直接使用“零拷贝”函数sendfile直接将其发送给客户端。另外,用户代码空间的数据赋值也应该尽可能的避免复制。当两个工作进程之间需要传递大量的数据时,我们就应该考虑使用共享内存来在他们直接直接共享这些数据,而不是使用管道或者消息队列来传递。上下文切换和锁:并发程序必须考虑上下文的切换问题,即进程切换或线程切换所导致的系统开销。即时I/O密集型服务器也不应该使用过多的工作线程(或工作进程),否则进程间切换将占用大量的CPU时间,服务器真正处理业务逻辑的CPU时间比重就下降了。因此为每个客户连接都创建一个工作线程是不可取的。应该使用某种高效的并发模式。(半同步半异步或者说领导者追随者模式)另一个问题就是共享资源的加锁保护。锁通常被认为是导致服务器效率低下的一个因素,因为由他引入的代码不仅不处理业务逻辑,而且需要访问内核资源,因此如果服务器有更好的解决方案,应该尽量避免使用锁。或者说服务器一定非要使用锁的话,尽量使用细粒度的锁,比如读写锁,当工作线程都只读一块内存区域时,读写锁不会增加系统开销,而只有当需要写时才真正需要锁住这块内存区域。对于高峰和低峰的伸缩处理,适度的缓存。

6. QQ飞车新用户注册时,如何判断新注册名字是否已存在?(数量级:几亿)

可以试下先将用户名通过编码方式转换,如转换64位整型。然后设置N个区间,每个区间为2^64/N的大小。对于新的用户名,先通过2分寻找该用户名属于哪个区间,然后在在这个区间,做一个hash。对于不同的时间复杂度和内存要求可以设置不同N的大小~

加一些基础的技术面试之外的职业素养的面试问题

1.你在工作中犯了个错误,有同事打你小报告,你如何处理?

a.同事之间应该培养和形成良好的同事关系,就是要互相支持而不是互相拆台,互相学习,互相帮助,共同进步。

b.如果小报告里边的事情都是事实也就是说确实是本人做的不好不对的方面,那么自己应该有则改之,提高自己。如果小报告里边的事

情全部不是事实,就是说确实诬陷,那么应该首先坚持日久见人心的态度,持之以恒的把本职工作做好,然后在必要的时候通过适当的

方式和领导沟通,相信领导会知道的。

2.你和同事合作完成一个任务,结果任务错过了截止日期,你如何处理?

3.职业规划?

4.离职原因?

5. 项目中遇到的难题,你是如何解决的?

A.时间 b要求 c.方法

I. Redis是什么缓存机制

redis(RemoteDictionaryServer)远程数据服务

内存高速缓存数据库。C语言编写,数据模型为key-value,NoSql数据库。

希望对你有所启发。apeit-程序猿IT中redis章节讲的不错,由浅入深,适合入门学习。

热点内容
我的世界电脑java怎么玩服务器 发布:2024-10-06 19:16:54 浏览:479
存储空间大于存储池中的可用容量 发布:2024-10-06 19:15:28 浏览:32
什么叫估算法 发布:2024-10-06 19:15:20 浏览:86
c语言库编译 发布:2024-10-06 19:09:23 浏览:746
啊里云系统电视如何更换安卓系统 发布:2024-10-06 18:50:09 浏览:575
编译语言分为几类 发布:2024-10-06 18:34:56 浏览:784
负数幂算法 发布:2024-10-06 18:29:48 浏览:350
iphone手机id密码是多少位 发布:2024-10-06 18:29:46 浏览:839
易经隔骨算法真的准吗 发布:2024-10-06 18:29:44 浏览:44
数据库有损坏 发布:2024-10-06 18:29:43 浏览:312