当前位置:首页 » 文件管理 » 离心压缩机的设计

离心压缩机的设计

发布时间: 2022-09-09 03:30:41

1. 离心式制冷压缩机的离心式制冷压缩机的特点和发展趋势

我国的科学家及科技工作者也进行了大量的卓有成效的研究,对离心式压缩机的设计及加工进行了深入的研究,并形成了一系列的研究成果,与国外相比,毫不逊色.建议国内的制冷企业高举民族工业的旗帜,研制出真正意义上的国产化离心式制冷压缩机精品. 离心式制冷压缩机作为一种速度型压缩机,具有以下优点:
1.在相同冷量的情况下,特别在大容量时,与螺杆压缩机组相比,省去了庞大的油分装置,机组的重量及尺寸较小,占地面积小;
2.离心式压缩机结构简单紧凑,运动件少,工作可靠,经久耐用,运行费用低;
3.容易实现多级压缩和多种蒸发温度,容易实现中间冷却,使得耗功较低;
4.离心机组中混入的润滑油极少,对换热器的传热效果影响较小,机组具有较高的效率。
具有以下缺点:
1.转子转速较高,为了保证叶轮一定的宽度,必须用于大中流量场合,不适合于小流量场合;
2.单级压比低,为了得到较高压比须采用多级叶轮,一般还要用增速齿轮;
3.喘振是离心式压缩机固有的缺点,机组须添加防喘振系统;
4.同一台机组工况不能有大的变动,适用的范围较窄。 目前国内离心式冷水机组的大部分市场主要由欧日美一些制冷企业所占据.比较有名的企业如特灵、开利、约克、麦克维尔、AXIMA(原苏尔寿)、荏原、三菱等依靠先进的技术及良好工艺主导离心冷水机组市场.国内企业主要为重庆通用,早期引进NREC的技术来开发离心式制冷机。
随着社会的发展,用户需要的冷量越来越高,另外由于节能的要求使得离心机组具有越来越广的市场。一些国内空调厂家如海尔、澳克玛、格力及美的(与重庆通用合并)纷纷推出自己的离心式冷水机组.大冷与AXIMA合作开发出离心冷水机组及区域供暖的离心热泵机组.这些离心机组大部分采用环保工质R134a。
随着能源的形式日趋紧张,节能降耗是产品发展的一大趋势.另外由于中国城镇化水平的不断提高,建筑能耗不断增加.具有最高性能系数的离心冷水机组无疑将成为市场的热点,近年来离心冷水机组的销量不断提高。
国内大部分开发离心冷水机组的企业只是购买进口压缩机,基本上没什么利润.国外离心机厂家不会轻易出让自己的核心技术,要想研制离心式制冷压缩机,只有走自主开发的道路.随着设计及制造技术的不断成熟,使得国产离心式制冷压缩机的研制成为可能。

2. 谁懂离心式压缩机的设计流程

记得我们以前做课程设计的时候是看的国标。
里面有详细的一步步的设计步骤。怎么算怎么选。如果你是在学校。可以问问你们导师。
或者在海川论坛上问问。那里牛人很多。

如果我自己想怎么设计压缩机。那无非就是从每个零件开始。转子,叶轮。当然你要知道你的工艺介质,压力,以及需要的密封等级之类的。。。
材料的选材这些和压力还有介质的性质也有关系。
这个问题很大。。真的。。。。

3. 离心压缩机怎样保证内部气体连续流动,后方的气体压力变大不会吧气体压回去吗

管道上一般装有回止阀(单向阀),回止阀的作用就是只准气体(液体)向着固定方向移动,吸气时(低压),阀门自动打开,排气时(高压),自动关闭,,能有效的阻止高压气体,返回低压管道,且防止电机(动力)过载。

4. 请教关于MVR压缩机系统设计问题

MVR是蒸汽机械再压缩技术
(mechanical bapor recompression )的简称。mvr是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术。早在60年代,德国和法国已成功的将该技术用于化工、食品、造纸、医药、海水淡化及污水处理等领域。 蒸发器其工作过程是将低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。除开车启动外,整个蒸发过程中无需生蒸汽从蒸发器出来的二次蒸汽,经压缩机压缩,压力、温度升高,热焓增加,然后送到蒸发器的加热室当作加热蒸汽使用,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。这样,原来要废弃的蒸汽就得到了充分的利用,回收了潜热,又提高了热效率,生蒸汽的经济性相当于多效蒸发的30效。为使蒸发装置的制造尽可能简单和操作方便,经常使用单效离心再压缩器,也可以是高压风机或透平压缩器。这些机器在1:1.2到1:2压缩比范围内其体积流量较高。对于低的蒸发速率,也可用活塞式压缩机、滑片压缩机或是螺杆压缩机。 蒸发设备紧凑,占地面积小、所需空间也小。又可省去冷却系统。对于需要扩建蒸发设备而供汽,供水能力不足,场地不够的现有工厂,特别是低温蒸发需要冷冻水冷凝的场合,可以收到既节省投资又取得较好的节能效果。
机械蒸汽再压缩的原理
由于成本原因,单级离心压缩机和高压风机被普遍用于机械蒸汽再压缩系统。因此下 述说明是针对此类设计。离心压缩机是体积控制机器,即无论吸入压力多大,体积流率几乎保持恒定。而质量流量的变化与绝对吸入压力成比例。 能量变化图 单级离心压缩机的压缩循环描绘在焓熵图中。单级离心压缩机需要的动力: 例如:将来自蒸发器的饱和水蒸汽从吸入状态p1=1.9 bar, t1=119 ℃压缩到p2= 2.7 bar, t2=161℃(压缩比 ∏= 1.4)。压缩循环沿着多变曲线1-2,蒸汽的比焓增加量Δhp。对于蒸汽的比焓h2,通过压缩机内效率(等熵效率)的等式:在此温度下,它进入到蒸发器的加热器。基于被吸入蒸汽的量,kg/hr。hp 单位多变(有效)压缩功,kJ/kg。hs 单位等熵压缩功,kJ/kg。 mvr能量变化图压缩机的等熵效率(内效率)除其他因素之外,单位多变压缩功 hp取决于多方指数κ和吸入气体的摩尔质量M,以及吸入温度和要求的压升。对于原动机(电动机、燃气机、涡轮机等)的实际耦合功率,考虑了更大的机械损耗余量。叶轮由标准材料制造的单级离心压缩机能够获得压缩因子1.8的水蒸汽压升,如果采用钛等更高质量的材料,压缩因子可高达2.5。这样一来,最终压力p2就是吸入压力p1的1.8倍,或最大2.5倍,这对应于饱和蒸汽温度升高约12-18K,最大温升可到30K,这取决于吸入压力。就蒸发技术而言,通常的做法是根据相应的水沸点温度来表示其压力。这样,有效温差就被直接表示出来。
采用机械蒸汽再压缩的原因
1)单位能量消耗低 2) 因温差低使产品的蒸发温和 3) 由于常用单效使产品停留时间短 4) 工艺简单,实用性强 5) 部分负荷运转特性优异 6) 操作成本低 通过使用相对少的能量,即在压缩热泵情况下的压缩机叶轮的机械能,能量被加入工艺加热介质中并进入连续循环。在此情况下,不需要一次蒸汽作为加热介质。
技术特点:
mvr原理图1)低能耗、低运行费用; 2)占地面积小; 3)公用工程配套少,工程总投资少, 4)运行平稳,自动化程度高; 5)无需原生蒸汽; 6)可以在40℃下蒸发而无需冷冻设备,特别适合热敏性物料。
应用推广范围:
1)蒸发浓缩 2)蒸发结晶 3)低温蒸发 mvr能流图能流图技术参数:
1)蒸发一吨水需要耗电为23-70度电; 2)可以实现蒸发温度17- 40℃的低温蒸发(无需冷冻水系统)

5. 离心式压缩机的工作原理

离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。
更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。
显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系:
式中
d2--叶轮外缘直径,m;
n--叶轮转速,r/min。
因此,离心式压缩机之所以要有很高的转速,是因为:
1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大;
2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小;
3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1mpa提高到0.6~0.7mpa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。
另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h空分设备配套的da350-61型离心式压缩机,转速为8600r/min;而为国产10000m3/h空分设备配套的1ty-1040/5.3型空气压缩机,转速为6000r/min。

6. 离心式压缩机的原理是什么

离心式压缩机中气压的提高,是靠叶轮旋转、扩压器扩压而实现的。根据排气压力的高低,可将其分为三类:离心通风机,风压在10-15kPa范围或小于此值;离心鼓风机,风压在15~350kPa范围;离心压缩机,风压在350kPa以上。
离心式压缩机叶轮对气体作功使气体的压力和速度升高,完成气体的运输,气体沿径向流过叶轮的压缩机。
又称透平式压缩机:主要用来压缩气体,主要由转子和定子两部分组成:转子包括叶轮和轴,叶轮上有叶片、平衡盘和一部分轴封;定子的主体是气缸,还有扩压器、弯道、回流器、迸气管、排气管等装置。
离心式压缩机的工作原理:
当叶轮高速旋转时,气体随着旋转,在离心力作用下,气体被甩到后面的扩压器中去,而在叶轮处形成真空地带,这时外界的新鲜气体进入叶轮。叶轮不断旋转,气体不断地吸入并甩出,从而保持了气体的连续流动。与往复式压缩机比较,离心式压缩机具有下述优点:结构紧凑,尺寸小,重量轻;排气连续、均匀,不需要中间罐等装置;振动小,易损件少,不需要庞大而笨重的基础件;除轴承外,机器内部不需润滑,省油,且不污染被压缩的气体;转速高;维修量小,调节方便。
离心式压缩机用于压缩气体的主要部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体的压力能的。
更通俗地说,气体在流过离心式压缩机的叶轮时,高速运转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。显然,叶轮对气体做功是气体得以升高压力的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度密切相关的,圆周速度越大,叶轮对气体所作的功就越大。

7. 设计离心压缩机叶轮时为什么需要校核当量扩张角

http://wenku..com/view/71c5d1adcfc789eb162dc848.html,这是我做的大学毕设的压缩机热力设计。如果你要问企业中的叶轮设计的话,就不太清楚了

8. 离心压缩机原理及优缺点

离心压缩机就是一种采用离心方式进行压缩的机器设备,这种机器设备的运转是非常平衡的,操作起来也非常安全,运转效率是很高的。离心压缩机的工作原理是什么呢?离心压缩机主要是依靠旋转过程中产生的离心力而带动压缩机运作的。但是很多没有学过物理的朋友,不知道什么是离心力,下面小编就来为大家详细的介绍一下离心压缩机的工作原理。




一、工作原理

离心式压缩机用于压缩气体的主要部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体的压力能的。更通俗地说,气体在流过离心式压缩机的叶轮时,高速运转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。显然,叶轮对气体做功是气体得以升高压力的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度密切相关的,圆周速度越大,叶轮对气体所作的功就越大。




二、优点

离心式压缩机之所以能获得这样广泛的应用,主要是比活塞式压缩机有以下一些优点。

1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。

2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。

3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。

4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。但是,离心式压缩机也还存在一些缺点。




缺点

1、离心式压缩机还不适用于气量太小及压比过高的场合。

2、离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。

3、离心式压缩机效率一般比活塞式压缩机低。

我国在五十年代已能制造离心式压缩机,从七十年代初开始又以石油化工厂,大型化肥厂为主,引进了一系列高性能的中、高压力的离心式压缩机,取得了丰富的使用经验,并在对引进技术进行消化、吸收的基础上大大增强了自己的研究、设计和制造能力。




离心压缩机的工作原理,大家现在了解了吗?离心压缩机的工作原理是很简单的,大家只要看一下它的原理介绍就知道是什么了。离心压缩机是一种使用比较广泛的设备,这种设备比活塞式缩机更加具有优势。离心压缩机的运转方式非常简单,而且可以减少误进的摩擦,是一种维修费用比较少的机器设备。但是离心压缩机的效率是比较低的,所以在选择的时候要慎重。

9. 如何设计一台单级高速离心压缩机

直接招聘工程师,买配件就好了,核心是找离心叶轮工程师,不过这在中国也是比较成熟的,人才很多,有现成的图纸和计算公式,可以找加工厂加工,电机,变速箱等,直接找供应商吧。

10. 离心式压缩机的结构和原理

离心式压缩机的工作原理与结构 1. 工作原理离心式制冷压缩机有单级、双级和多级等多种结构型式。单级压缩机主要由吸气室、叶轮、扩压器、蜗壳等组成,如图6-1所示。对于多级压缩机,还设有弯道和回流器等部件。一个工作叶轮和与其相配合的固定元件(如吸气室、扩压器、弯道、回流器或蜗壳等)就组成压缩机的一个级。多级离心式制冷压缩机的主轴上设置着几个叶轮串联工作,以达到较高的压力比。多级离心式制冷压缩机的中间级如图6-2所示。为了节省压缩功耗和不使排气温度过高,级数较多的离心式制冷压缩机中可分为几段,每段包括一到几级。低压段的排气需经中间冷却后才输往高压段。 1—进口可调导流叶片 2—吸气室 1—叶轮 2—扩压器 3—叶轮 4—蜗壳 5—扩压器 6—主轴 3—弯道 4—回流器图6-1所示的单级离心式制冷压缩机的工作原理如下:压缩机叶轮3旋转时,制冷剂气体由吸气室2通过进口可调导流叶片1进入叶轮流道,在叶轮叶片的推动下气体随着叶轮一起旋转。由于离心力的作用,气体沿着叶轮流道径向流动并离开叶轮,同时,叶轮进口处形成低压,气体由吸气管不断吸入。在此过程中,叶轮对气体做功,使其动能和压力能增加,气体的压力和流速得到提高。接着,气体以高速进入截面逐渐扩大的扩压器5和蜗壳4,流速逐渐下降,大部分气体动能转变为压力能,压力进一步提高,然后再引出压缩机外。对于多级离心式制冷压缩机,为了使制冷剂气体压力继续提高,则利用弯道和回流器再将气体引入下一级叶轮进行压缩,如图6-2所示。因压缩机的工作原理不同,离心式制冷压缩机与往复活塞式制冷压缩机相比,具有以下特点:①在相同制冷量时,其外形尺寸小、重量轻、占地面积小。相同的制冷工况及制冷量,活塞式制冷压缩机比离心式制冷压缩机(包括齿轮增速器)重5~8倍,占地面积多一倍左右。②无往复运动部件,动平衡特性好,振动小,基础要求简单。目前对中小型组装式机组,压缩机可直接装在单筒式的蒸发�0�6冷凝器上,无需另外设计基础,安装方便。③磨损部件少,连续运行周期长,维修费用低,使用寿命长。④润滑油与制冷剂基本上不接触,从而提高了蒸发器和冷凝器的传热性能。⑤易于实现多级压缩和节流,达到同一台制冷机多种蒸发温度的操作运行。⑥能够经济地进行无级调节。可以利用进口导流叶片自动进行能量调节,调节范围和节能效果较好。⑦对大型制冷机,若用经济性高的工业汽轮机直接带动,实现变转速调节,节能效果更好。尤其对有废热蒸汽的工业企业,还能实现能量回收。⑧转速较高,用电动机驱动的一般需要设置增速器。而且,对轴端密封要求高,这些均增加了制造上的困难和结构上的复杂性。⑨当冷凝压力较高,或制冷负荷太低时,压缩机组会发生喘振而不能正常工作。⑩制冷量较小时,效率较低。目前所使用的离心式制冷机组大致可以分成两大类:一类为冷水机组,其蒸发温度在-5℃以上,大多用于大型中央空调或制取5℃以上冷水或略低于0℃盐水的工业过程用场合;另一类是低温机组,其蒸发温度为-5~-40℃,多用于制冷量较大的化工工艺流程。另外在啤酒工业、人造干冰场、冷冻土壤、低温试验室和冷、温水同时供应的热泵系统等也可使用离心式制冷机组。离心式制冷压缩机通常用于制冷量较大的场合,在350~7000kW内采用封闭离心式制冷压缩机,在7000~35000kW范围内多采用开启离心式制冷压缩机。 2. 主要零部件的结构与作用由于使用场合的蒸发温度、制冷剂的不同,离心式制冷压缩机的缸数,段数和级数相差很大,总体结构上也有差异,但其基本组成零部件不会改变。现将其主要零部件的结构与作用简述如下。(1)吸气室 吸气室的作用是将从蒸发器或级间冷却器来的气体,均匀地引导至叶轮的进口。为减少气流的扰动和分离损失,吸气室沿气体流动方向的截面一般做成渐缩形,使气流略有加速。吸气室的结构比较简单,有轴向进气和径向进气两种形式,如图6-3所示。对单级悬臂压缩机,压缩机放在蒸发器和冷凝器之上的组装式空调机组中,常用径向进气肘管式吸气室(图6-3b)。但由于叶轮的吸入口为轴向的,径向进气的吸气室需设置导流弯道,为了使气流在转弯后能均匀地流入叶轮,吸气室转弯处有时还加有导流板。图中c所示的吸气室常用于具有双支承轴承,而且第一级叶轮有贯穿轴时的多级压缩机中。 a)轴向进气吸气室 b)径向进气肘管式吸气室 c)径向进气半蜗壳式吸气室(2)进口导流叶片 在压缩机第一级叶轮进口前的机壳上安装进口导流叶片可用来调节制冷量。当导流叶片旋转时,改变了进入叶轮的气流流动方向和气体流量的大小。转动导叶时可采用杠杆式或钢丝绳式调节机构。杠杆式如图6-4所示,进口导叶实际上是一个由若 1—小齿轮 2—齿圈 3—转动叶片 4—伺服电动机 5—波纹管 6—连杆 7—杠杆 8—手轮 1—导叶 2—从动齿轮 3—钢丝绳 4—过渡轮 5—主动齿轮干可转动叶片3组成的菊形阀,每个叶片根部均有一个小齿轮1,由大齿圈2带动,大齿圈是通过杠杆7和连杆6由伺服电动机4传动,也可用手轮8进行操作。图6-5为钢丝绳传动形式,由一个主动齿轮5通过钢丝绳3带动六个从动齿轮2转动,从而带动七个导叶1开启。为了使钢丝绳在固定轨道上运动,防止它从主动齿轮和从动齿轮上滑出,又安装有七个过渡轮4,主动齿轮根据制冷机组的调节信号,由导叶调节执行机构带动链式执行机构转动主动齿轮。进口导叶的材料为铸铜或铸铝,叶片具有机翼形与对称机翼形的叶形剖面,由人工修磨选配。进口导叶转轴上配有铜衬套,转轴与衬套间以及各连接部位应注入少许润滑剂,以保证机构转动灵活。(3)叶轮 叶轮也称工作轮,是压缩机中对气体做功的惟一部件。叶轮随主轴高速旋转后,利用其叶片对气体做功,气体由于受旋转离心力的作用以及在叶轮内的扩压流动,使气体通过叶轮后的压力和速度得到提高。叶轮按结构型式分为闭式、半开式和开式三种,通常采用闭式和半开式两种,如图6-6所示。闭式叶轮由轮盖、叶片和轮盘组成,空调用制冷压缩机大多采用闭式。半开式叶轮不设轮盖,一侧敞开,仅有叶片和轮盘,用于单级压力比较大的场合。有轮盖时,可减少内漏气损失,提高效率,但在叶轮旋转时,轮盖的应力较大,因此叶轮的圆周速度不能太大,限制了单级压力比的提高。半开式叶轮由于没有轮盖,适宜于承受离心惯性力,因而对叶轮强度有利,使叶轮圆周速度可以较高。钢制半开式叶轮圆周速度目前可达450~540m/s,单级压力比可达6.5。 a) 闭式 b)半开式离心式制冷压缩机的叶轮的叶片按形状可分为单圆弧、双圆弧、直叶片和三元叶片。空调用压缩机的单级叶轮多采用形状既弯曲又扭曲的三元叶片,加工比较复杂,精度要求高。当使用氟利昂制冷剂时,通常用铸铝叶轮,可降低加工要求。(4)扩压器 气体从叶轮流出时有很高的流动速度,一般可达200~300m/s,占叶轮对气体做功的很大比例。为了将这部分动能充分地转变为压力能,同时为了使气体在进入下一级时有较低的合理的流动速度,在叶轮后面设置了扩压器,如图6-2所示。扩压器通常是由两个和叶轮轴相垂直的平行壁面组成,如果在两平行壁面之间不装叶片,称为无叶扩压器;如果设置叶片,则称为叶片扩压器。扩压器内环形通道截面是逐渐扩大的,当气体流过时,速度逐渐降低压力逐渐升高。无叶扩压器结构简单,制造方便,由于流道内没有叶片阻挡,无冲击损失。在空调离心式制冷压缩机中,为了适应其较宽的工况范围,一般采用无叶扩压器。叶片扩压器常用于低温机组中的多级压缩机中。(5)弯道和回流器 在多级离心式制冷压缩机中,弯道和回流器是为了把由扩压器流出的气体引导至下一级叶轮。弯道的作用是将扩压器出口的气流引导至回流器进口,使气流从离心方向变为向心方向。回流器则是把气流均匀地导向下一级叶轮的进口,为此,在回流器流道中设有叶片,使气体按叶片弯曲方向流动,沿轴向进入下一级叶轮。在采用多级节流中间补气制冷循环中,段与段之间有中间加气,因此在离心式制冷压缩机的回流器中,还有级间加气的结构。图6-7给出了三种加气型式,其中b和c型对下一级叶轮入口气流均匀性不利,但可以减少轴向距离。 (6)蜗壳 蜗壳的作用是把从扩压器或从叶轮中(没有扩压器时)流出的气体汇集起来,排至冷凝器或中间冷却器。图6-8所示为离心式制冷压缩机中常用的一种蜗壳形式,其流通截面是沿叶轮转向(即进入气流的旋转方向)逐渐增大的,以适应流量沿圆周不均匀的情况,同时也起到使气流减速和扩压的作用。蜗壳一般是装在每段最后一级的扩压器之后,也有的最后级不用扩压器而将蜗壳直接装在叶轮之后,如图6-9所示。其中a为蜗壳前装有扩压器; a)蜗壳前为扩压器 b)蜗壳前为叶轮 c)不对称内蜗壳 b为蜗壳直接装在叶轮之后,这种蜗壳中气流速度较大,一般在蜗壳后再设扩压管,由于叶轮后直接是蜗壳,所以对叶轮的工作影响较大,增加了叶轮出口气流的不均匀性;c为不对称内蜗壳,是空调用单级机组中常用的形式,这种蜗壳是安置在叶轮的一侧,蜗壳的外径保持不变,其流通截面的增加是由减小内半径来达到的。蜗壳的横截面常见的有圆形、梯形等。在氟利昂冷水机组的蜗壳底部有泄油孔,水平位置设有与油引射器相连的高压气引管。各处用充气密封的高压气体均由蜗壳内引出。(7)密封 对于封闭型机组,无需采用防止制冷剂外泄漏的轴封部件。但在压缩机内部,为防止级间气体内漏,或油与气的相互渗漏,必须采用各种型式的气封和油封部件,对于开启式压缩机,还需设置轴封装置。离心式制冷压缩机中常用的密封型式有如下几种。 1)迷宫式密封 又称为梳齿密封,主要用于级间的密封,如轮盖与轴套的内密封及平衡盘处的密封。迷宫式密封由梳齿隔开的许多小室组成,它是利用梳齿形的曲径使气体向低压侧泄漏时受到多次节流膨胀降压(因为每经一道间隙和小室气体压力均有损失),从而达到减少泄漏的目的。迷宫密封的结构多种多样,常见的如图6-10所示。曲折密封优于平滑型,常用于轴套、平衡盘的密封,但制造较为复杂,轴向定位较严格。台阶型密封主要用于轮盖密封。 a)镶嵌曲折型密封 b)整体平滑型密封 c)台阶型密封 1—轴封壳体 2—弹簧 3、7—O形圈 4—静环座 5—静环 6—动环 2)机械密封 主要用于开启式压缩机中的转轴穿过机器外壳部位的轴端密封。机械密封的结构型式较多,主要有由一个静环和一个动环组成的单端面型,以及两个静环和一个动环,或两个静环和两个动环组成的双端面型。图6-11为一个动环6和两个静环5组成的双端面型机械密封。密封表面为静环与动环的接触面,弹簧2通过静环座4把静环压紧在动环上。O形圈3和7防止气体从间隙中泄漏。在压缩机工作时,轴封腔内通入压力高于气体压力约0.05~0.1MPa的润滑油,把压紧在动环两侧的静环推开一个间隙,形成密封油膜,既减少了摩擦损失,也起到了冷却和加强密封效果的作用。停机时油压下降,但恒压罐使轴封腔内尚维持一定油压,弹簧又把静环压紧在动环上,从而形成良好的停机密封。机械密封的优点是密封性能好,接近于绝对密封,且结构紧凑。但不足之处是易于磨损,寿命短,摩擦副的线速度不能太高,密封面比压也有一定的限制。 a)单片油封 b)充气油封 3)油封 图6-12a为简单的单片油封。单片油封装于轴承两侧,单片常用铝铜材料,直径间隙为0.2~0.4mm,大于轴承的径向间隙。图6-12b为充气密封。在空调用离心式制冷压缩机上,主要采用充气密封。它是在整体铸铝合金车削成的迷宫齿排中部,开有环形空腔,从压缩机的蜗壳内,引一股略高于油压的高压气体进入环形空腔中,高压气流从空腔内密封齿两端逸出,一端封油,另一端进入压缩机内。齿片的直径间隙一般取0.2~0.6mm。除上述主要零部件外,离心式制冷压缩机还有其它一些零部件。如:减少轴向推力的平衡盘;承受转子剩余轴向推力的推力轴承以及支撑转子的径向轴承等。为了使压缩机持续、安全、高效地运行,还需设置一些辅助设备和系统,如增速器、润滑系统、冷却系统、自动控制和监测及安全保护系统等。 -----这里也有: http://bbs.hcbbs.com/viewthread.php?tid=136088

热点内容
安卓转iphone有什么不好的 发布:2024-10-11 18:13:22 浏览:584
同步两个文件夹 发布:2024-10-11 17:49:02 浏览:481
SQL赴日 发布:2024-10-11 17:28:25 浏览:389
新建文件夹的英语 发布:2024-10-11 17:28:24 浏览:447
对称加密应用 发布:2024-10-11 17:27:48 浏览:441
ftp带字幕 发布:2024-10-11 17:19:37 浏览:431
android测试环境 发布:2024-10-11 17:10:45 浏览:798
如何查找内网服务器地址 发布:2024-10-11 16:54:55 浏览:395
cvs编译器哪个好 发布:2024-10-11 16:54:51 浏览:677
SQL数据库文件的类型 发布:2024-10-11 16:35:12 浏览:115