当前位置:首页 » 文件管理 » 锻造压缩比

锻造压缩比

发布时间: 2022-07-26 05:35:23

Ⅰ 镦粗、拔长、扩孔时的锻造比都怎么计算

1、拔长时,锻造比为y=F0/F1或y=L1/L0
式中F0,L0—拔长前钢锭或钢坯的横断面积和长度;
F1 ,L1—拔长后钢锭或钢坯的横截面积和长度。
2、镦粗时的锻造比,也称镦粗比或压缩比,其值为
y=F1/F0或y=H0/H1
F0, H0—镦粗前钢锭或钢坯的横截面积和高度;
F1, H1—镦粗后钢锭或钢坯的横截面积和高度。

Ⅱ 汽车缸体是什么材质的

发动机是由两大机构、五大系统组成的,所谓的铸铁发动机和铝合金发动机,仅仅是指发动机缸体的材质而已,至于其它零部件的材质,基本都是相同的。也就是说,铝合金发动机上也有很多铁制零部件,铸铁发动机上也有很多铝合金零部件。为了详细的说明汽车发动机的材质,我们不妨把发动机分解开来,详细的说一说每一个零部件的材质。
1、气缸体:气缸体是发动机最基础的零部件,其它的各种零部件都直接或者间接安装在它的上面。
气缸体的材质分为两种,一种是铸铁的,一般使用灰铸铁铸造,现在的发动机为了增强气缸体 强度和耐磨性,还采用了含镍、铬、钼、磷等元素的优质灰铸铁。而一些高强化的柴油机会使用更高级的球墨铸铁或蠕墨铸铁铸造。铸铁气缸体的强度、刚度、耐磨性以及吸收振动的能力都是非常优秀的,最大的缺点就是重量大。
而现在小型车上使用的汽油发动机,更多的采用铝合金气缸体,或者是铝镁合金气缸体。它们使用铝合金或者铝镁合金铸造而成,最大的优点就是重量轻、散热好,但是气缸体的强度、刚度、耐磨性以及吸收振动的能力却不如铸铁气缸体。所以,那些整天吹嘘铝合金发动机更优秀的网络喷子可以休矣。
2、气缸盖:气缸盖与气缸体的工作条件及结构复杂性有许多共同之处,所以二者一般使用同样的材质铸造,也是灰铸铁或者合金铸铁。有些汽油机为了提高散热性能及减轻发动机重量,会使用铝合金来铸造气缸盖。但是铝合金强度低,使用中易变形,只能应用在汽油机上,柴油机还是使用强度更高的铸铁铸造。
3、气缸套:气缸套是镶嵌在气缸体上的,活塞与活塞环在其中上下运动,所以它必须非常耐磨。因此,它一般都采用耐磨性好的高级铸铁制造,比如珠光体铸铁、合金铸铁、高磷铸铁、含硼铸铁等。需要注意的是:不论是铸铁发动机还是铝合金发动机,气缸套都是铸铁铸造的,铝合金发动机也必须镶嵌一个铸铁的气缸套。现在有一种更先进的技术,就是在铝合金气缸体上直接使用金属喷涂技术,喷涂一层致密耐磨的铁质涂层,然后再使用激光淬火,增强硬度和耐磨性,这样可以大大减轻发动机的重量和体积。不过这样的发动机是不能维修的,如果出现了爆缸的故障,只能直接更换发动机了。
4、活塞:不论是铸铁发动机还是铝合金发动机,它们使用的活塞基本都是铝合金铸造的。使用较为广泛的是硅铝合金,它有较小的膨胀系数和密度,耐磨性也不错。少数负荷较大的柴油机使用了高温强度和导热性较好的铜镍镁铝合金活塞。现在也有部分柴油机使用铸铁活塞,它是性能极为优异,耐热性好,与气缸体膨胀系数一致,可以减小装配间隙。在早期的锡柴6DL-2柴油机上就使用了铸铁活塞,发动机运行的极为平稳。
5、活塞环:活塞环直接与气缸壁接触,并且高速上下运动,所以要求它有较好的耐磨性。一般活塞环都使用优质灰铸铁、合金铸铁或者球墨铸铁铸造,并且在摩擦表面做多孔镀铬或者喷钼处理,以增强耐磨性以及润滑性能。
6、活塞销:活塞销是连接活塞与连杆的,它在工作过程中要承受很大的连续冲击载荷,因此对它的 强度和耐磨性要求都是非常高的。一般采用低碳钢或者低碳合金钢锻造而成,比如20Cr、20MnV等。表面要做渗碳或者氰化处理,这样就可以获得较高的表面硬度,耐磨性好,强度高,同时又有较软的芯部,耐冲击性能较好。
7、连杆:连杆是连接活塞与曲轴的,把活塞的往复直线运动转换为曲轴的旋转运动,并把活塞受到的力传递给曲轴。它在工作中要承受交变的弯曲载荷。一般采用40Cr等中碳合金钢锻造而成,并进行表面喷丸处理,以提高耐疲劳强度。
8、曲轴:曲轴是发动机最重要的机件之一,它是发动机动力输出元件,在工作时承受周期变化的气体压力、往复惯性力和离心力等,工况极为复杂,因此对它的材质要求也是极高的。曲轴一般采用优质中碳钢或者中碳合金钢锻造,大型柴油机一般是由球墨铸铁铸造,表面再经喷丸强化、淬火处理。还有些曲轴表面要做氮化处理,以提高耐疲劳强度。
9、凸轮轴:凸轮轴是配气机构中最主要的零部件之一,它的工作条件与曲轴类似,一般使用优质碳素结构钢或者合金结构钢锻造而成,在凸轮表面在进行高频淬火或者渗碳淬火处理,以提高耐磨性和表面硬度。现在也有些车型使用合金铸铁或者球墨铸铁铸造凸轮轴。
10、气门:气门是发动机配气机构中的零部件,用来控制空气进入气缸,并将燃烧后的废气排出发动机。它最大的特点就是要承受燃烧高温,因此气门一般都采用耐热钢来制造,比如硅铬钢、硅铬钼钢、硅铬锰钢等。有些气门表面还会堆焊或者等离子喷涂一层钨钴合金,以提高耐蚀性和耐高温性能。此外,为了增强散热,有些气门内部还装有金属钠,钠受热熔化后在内部流动,将气门头部的热量带给气门杆部并散发出去。
11、气门座圈:气门座圈与气门配合工作,它是镶嵌在气缸盖上面的。它的工作条件与气门类似,一般采用与气门同样的 材质制作,比如耐热合金钢或者合金铸铁等。
12、气门弹簧:气门弹簧的作用是使气门自动回位关闭,并保证气门与气门座的座合压力。此外,还要吸收气门在开闭过程中的惯性力。它一般采用优质冷拔弹簧钢丝卷制而成,并经过热处理,表面再进行抛光或喷丸处理。
13、气门室盖:气门室盖是用来密封气门室的,防止气门室机油飞溅。它一般采用薄钢板冲压而成,也有些车型使用铝合金气门室盖,它们的功能都是一样的,并没有高低之分。有些车型为了加强保温,会使用散热较差的塑料或者树脂材料来制造气门室盖。
14、油底壳:油底壳是安装在发动机最下面,用来盛放机油。它一般采用薄钢板冲压而成,也有些车型使用铝合金铸造,相对来说,铝合金铸造的油底壳散热性更好一些,但是耐冲击、耐撞能力较差,受到撞击就会破损,不像薄钢板油底壳,受到撞击可能只是变形,但不会破损漏油。
以上就是发动机中主要零部件的材质分布情况。其实发动机使用的材料不仅仅是这些,还有其它的各种橡胶件(如各种油封等)、合金件(比如各部位轴瓦、铜套等)等,发动机附属件上还有铜、锡、树脂、塑料等各种金属非金属材料。总之,发动机并非一种材料组成,而是由许许多多材料组合而成的。这些材料的质量,在很大程度上就决定了发动机质量的高低。我们经常说日系发动机质量好,很大程度上就是它们的材料工艺更好。

Ⅲ 锻球与铸球有什么区别

(1)原料不同:锻球材料为优质钢,而铸球材料为废铁;
(2)生产工艺不同:铸球是简单的铁水注模回火,无压缩比,而锻球从下料加热锻打热处理,压缩比要十几倍以上,组织紧密。
(3)铸球表面有浇注口、砂眼和环带,而锻球表面光滑,表面质量严重影响球在研磨过程中的变形,锻球由于表面质量优于铸球,使用过程中不易变形。
(4)硬度不同:锻球表面硬度HRC56-65心部硬度HRC54-62(规格不同、硬度有差异),经处理的好的铸球表面硬度≥50-56,但心部硬度≤30,整体硬度低。
(5)锻球冲击韧性大于12 j/ cm,而铸球只有3-6 j/ cm,此项决定了破碎率锻球(实际≤1%)优于铸球(≥3%)。
(6)铸球适用于直径1.5-3.8m的磨机,而锻球适用于直径1.5-11m及以上的磨机。
(7)铸球只适用于干磨,而锻球由于采用优质合金钢,合金元素的机械性能使其具有天然的耐腐蚀性,加上先进的热处理工艺使磨球耐腐蚀性更强,干磨和湿磨均适用。

Ⅳ 发动机改压缩比

不能从9:1改道10:1除非换发动机光改缸带来的负面影响会很大
如爆缸活塞爆裂
除非订锻造件第一硬度强第二锻造件抗震效果好
最关键的就是即使改成10:1中国油品质不行97#相当于欧美国家93#标准 还有一点一般加油站97#的油基本上5T(吨)的油罐车3个月才对油站97#油库加一次想想把
再说改该去都不如买辆街车CB系列 改个福喜花1-2W改来该去还是福喜永远变不了(极限上海有位花5W该福喜最多跑180KM每小时) CBR954(才5-6W)跑300KM每小时左右

Ⅳ 模具钢锻造应考虑的生产工艺要点有哪些

近些年来,为了提高锻造效率和锻造的模具钢尺寸精度,一般采用液压快锻机进行模具钢的生产,对于锻造应考虑的生产工艺要点有:

1)保证足够的压缩比

从钢锭到钢胚、材的加工比,也称压缩比或锻造比(简称锻比),一般用k=F0/F(FO-钢锭平均截面积,F-胚或材截面积)。如果分步加工,则总锻压比是各步的锻压比的总和,这是工模具钢的热加工过程中最主要的工艺参数,在有的钢种的技术条件中,有明确的规定,一般不应小于4,。尤其是模块,对锻造比和镦粗比的要求更为严格。

2)加热温度和升温速度

钢锭的加热温度是在模具钢热加工最重要的工艺参数,一般与钢种的特性有关,主要取决于钢的化学成分。如果加热温度过高,会引起过热、过烧、晶粒粗大等缺陷。尤其是Cr12型的冷作模具钢。加热温度过低,难以加工、也易出现裂纹,影响生产设备和效率。因此应严格规定模具钢的加热温度。为保证钢锭表面和中心部位的温度梯度小和减小热应力和组织应力,从而导致裂纹的产生,应缓慢升温,并分几段预热保温,然后逐渐升温到加热温度,对于中、高合金模具钢的冷锭一般不要高于600℃装炉。

3)终锻温度

在锻造过程中,在确保模具钢不出现裂纹的情况下,应尽量用较低的终锻温度,会获得更细小的晶粒。其次,对于某些莱氏体钢,在锻造时避免终锻温度过低,而产生角裂和边裂。

4)变形工艺

对于模具钢的变形可以使用多种变形方式,冶金厂一般以拔长为主,对于大断面的材或模块,为了保证质量,有事采用镦拔,即镦粗与拔长相结合,这是增加锻造比的主要方式。在变形过程中,应注意变形量的控制。用精锻机生产开胚时,尤其要注意变形道次和每道次的变形量的设计和钢锭(钢胚)的加热温度的控制,以免发生孔洞缺陷,因为精锻机锤击力小且高频锻打,这对变形抗力大的难变形钢种十分有利,但由此造成钢材的便面变形,从而易形成孔洞。

5)钢胚的冷却

中山华氏抚顺特钢表示模具钢的大多数钢锻后或轧后要求缓冷或红松退火,在缓冷坑中缓冷时,注意入坑的温度和缓冷坑的保温性能,一般钢种在锻后入坑,保温时间不要低于48h。

Ⅵ 管坯热轧工艺与管坯锻造工艺有什么不同

圆钢是圆钢
分普元,碳元.合结圆等等
管坯钢是指外观象圆钢的管胚,是用来做无缝管的原材料. 坯是钢工业产品一般分类中的半成品(共四类,初产品、半成品、轧制成品和最终产品、锻制条钢),是指由轧制或锻造钢锭获得的,或是由连铸获得的半成品,通常是供进一步轧制或锻造加工成成品用。
圆钢是轧制成品和最终成品类中的棒材类,是指横截面为圆形、直径通常不小于8mm的棒材。(小的是盘元)
管坯是就是圆坯,但不是圆钢,是一半成品,用来加工无缝管的占最多。 从表面看:圆钢表面比较光滑;而由连铸直接生产出来的管坯表面有振痕.
轧制的管坯和圆钢从表面看就没有区别了.
圆钢是指截面为圆形的实心长条钢材。其规格以直径的毫米数表示,如“
50”即表示直径为
50毫米的圆钢。
圆钢分为热轧、锻制和冷拉三种。热轧圆钢的规格为5.5-250毫米。其中:5.5-25毫米的小圆钢大多以直条成捆供应,常用作钢筋、螺栓及各种机械零件;大于25毫米的圆钢,主要用于制造机械零件或作无缝钢管坯
圆钢与其它钢筋的区别:1
外型不一样,圆钢外型光圆,无纹无肋,其它钢筋表面外型有刻纹或有肋.这样就造成圆钢与混凝土的粘结力小,而其它钢筋与混凝土的粘结力大.
2
成份不一样,圆钢(一级钢)属于普通低碳钢,其它钢筋多为合金钢.
3
强度不一样.圆钢强度低,其它钢强度高,即直径大小相同的圆钢与其它钢筋相比,圆钢所能承受的拉力要比其它钢筋小,但圆钢的塑性比其它钢筋强,即圆钢在被拉断前有较大的变形,而其它钢筋在被拉断前的变形要小得多.
管坯(tube
blank)生产热铸无缝管用的坯料。种类有铸锭、连铸坯、轧坯、锻坯以及空心铸坯。
大量应用的是圆形轧坯和连铸坯。离心浇注的空心坯
多用于高合金钢和难穿孔的金属。钢锭仅用于大中型周期式轧管机组。(见热乳无缝管机组)
由于斜轧穿孔(见二辘针札穿孔)不利的应力状态和大的不均匀变形,易产生缺陷,以及对产品要求较严,制管用钢多为均质的镇静钢或半镇静钢。坯料断面形状由管坯穿孔方式决定,推札穿孔和压力穿孔常用方坯,斜轧穿孔用圆坯。
连铸坯发展很快。圆管坯的连铸有水平连铸和弧形连铸。连铸坯不但成本低,而且质量好(偏析小,夹杂物富积少等)。由于连铸省略了开坯工序,为保证产品应具有的性能,由连铸坯轧至成品应有足够的压缩比。管坯的内部缺陷主要有缩孔残余、中心疏松以及非金属夹杂物聚集。外表缺陷主要有非金属夹杂物积聚、浇注时产生的纵横向裂纹以及开坯时出现的耳子、折叠和结疤等。管坯质量在很大程度上决定于非金属夹杂物对金属的污染程度。提高金属的纯净度是提高管坯质量的基础.生产中应采用一些提高钢的纯净度和减少非金属夹杂物的冶炼和浇注工艺,如炉外精炼、真空脱气、钢包吹氢、保护气体浇注、电磁搅拌等。为了避免管坯上留有冶炼、铸锭等工序造成的缺陷,对管坯进行检查并对缺陷进行清理是必要的。检查的方法有人工检查和无损探伤。对表面缺陷应进行砂轮清理、风铲清理、火焰清理或剥皮。

Ⅶ 什么是锻打压缩比

锻打压缩比,就是指金属类物质在受热以后,根据物理热涨冷缩的原理。求得的一个最合理的比值。如果我们在锻打工具时,不计算压缩比,往往会在构件冷却以后,尺寸错误。因为金属物体在受热后锻打时和冷却后的物体尺寸存在误差。

Ⅷ 哪个大哥给我几篇汽车改装的理论文章(跪求)

点火阶段可视为油气燃烧前能量的累积,当点火完成后,火焰便开始以燃烧压力波的形式向外传播,其传播的方式是以火星塞为中心,一层一层依序向外燃烧,就如同将石头丢入水中,在水面形成涟漪一般。在火焰向外传播时,在已燃烧和未燃烧的油气之间,有一进行燃烧氧化反应的反应带,我们称为‘火焰波前’。火焰波前的范围大小会影响燃烧的反应速率和汽缸内压力上升的速率。油气燃烧的速度对引擎的性能有决定性的影响,燃烧的速度越快,引擎的性能越好,爆震发生的趋势也越低。
淬熄
对引擎的燃烧来说,汽缸壁是燃烧波所能到达最远的边界,汽缸壁由于有冷却系统的作用,温度大都维持在 200℃左右,这相对于 700℃以上的火焰温度来说是很低的温度,所以当燃烧波传到汽缸壁时,火焰的温度便立刻下降,使得汽缸壁附近燃烧波的氧化作用因而减缓甚至中断,而这趋缓的氧化反应便产生了不完全氧化的产物HC及CO。这一氧化反应较缓和的区域我们称为‘淬熄层’,淬熄层越小,表示汽缸的热传损失量越少,引擎的热效率较高、出力较大。
影响引擎燃烧的因素:
影响点火的因素:
点火的难易乃由‘最小点火能’所决定,最小点火能则是受燃料的分子量、混合气的浓度、火星塞电极的形状与间隙、汽缸温度、混合气气体流动的影响而产生变化。燃料的分子量越小、汽缸的温度越高,其最小点火能越小,点火越容易。混合气的浓度稍浓于理想空燃比(14.7:1),并能在汽缸内快速的流动使油气更均匀,皆有助于点火。而火星塞对点火的难易更有决定性的影响,火星塞的电极间隙若减小则最小点火能将增大,不过间隙也不是越大越好,因为间隙大则跳火时间缩短,不利于点火,所以间隙直必须取两者的折冲。火星塞中央电极的直径越大,点火所需的电压必须升高,若将电击形状改为尖型,将有利于点火。此外,火星塞的热度等级越高,表示中央电极不易散热,因此对点火越有利。但是当火星塞热值过高或汽缸过热时,将使油气在火星塞未点火前及自行点燃,称为”预燃”(Preignition)是异常燃烧的一种,有别于爆震,但同样对引擎将产生不利的影响。有人会改用电极为针型、且导电性较好的火星塞,为的就是加速完成点火。
影响燃烧的因素:
1、空燃比
燃烧速度会因为混合气的组成、压力、温度而变化,影响最显着的是空燃比,稍浓于理想空燃比(14.7:1)时可得到最大的燃烧速度,若空燃比低或高达到某一界限以上时,火焰便不再前进,此界限称为‘燃烧界限’。汽油的燃烧界限是空燃比22:1~8:1可安定运转的极限是18:1。所谓‘稀薄燃烧引擎系统’技术(Lean Burn Combustion System) 就是让引擎在尽量接近燃烧界限的下限且不产生爆震的情况下运转。
2、火星塞的位置
火星塞的位置虽对燃烧的速度没有影响,但是它决定了相同燃烧速度下完成燃烧所需的时间。火星塞和汽缸必的距离越近,则完成燃烧的时间越短。因为油气燃烧的过程也是引擎最主要的加热、加压过程,这段时间的长短,直接影响到引擎的热效率,也影响到爆震的趋势。火星塞的最佳位置就是在燃烧室的中央,而为了达成此一设计,多气门和双凸轮轴的设计是必然的趋势。
3、进、排气压力与进气温度
进气压力的提高可促使油气燃烧的速度增加,而进气温度升高却会使容积效率和混合气密度降低,导致火焰传播速度下降。当排气压力越高时,则每循环残留在汽缸内的废气越多,使能吸入的新鲜混合气减少,而随着残留废气比例的增加,燃烧时的阻碍亦增大,火焰传播的速度因而降低。要提高进气压力最常用的方法就是利用 Turbo-charger 或Super-Charger ,而赛车引擎通常用碳纤维来作为进气道的材料,除了重量轻外,最重要的就是取碳纤维不易吸热,本身的温度不会因为引擎室的温度升高而升高,可大幅降低进气温度。至于要如何降低排气压力,当然是从排气管着手,而又以头段的影响最大。
4、进气速度
进气速度影响了进入汽缸内油气的流动,油气的流动除了可以让油气的混合更均匀,更可产生搅动的作用使燃烧火焰和未燃烧的油气容易混在一起,增加火波前的范围,加快燃烧的速度。进气速度与燃烧速度成近乎正比的关系,进气速度越快,燃烧的速度越快。而进气的速度与进气歧管的口径与长度、汽门设计、燃烧室几何形状有关。
5、压缩比
压缩比的增加会同时影响燃烧时的温度与压力,并让油气分子间的距离变小,而油气的燃烧速度也随着压缩比的增高而增大。高性能引擎都想办法在不发生爆震的前提下尽量的提高压缩比,不但自然吸气引擎是如此,就连增压引擎的压缩比都已提高到超过9.0:1 以上的水准。要提高压缩比最简单的方法就是改用较薄的汽缸垫片。
6、点火正时
引擎的最大功率输出是取决于油气燃烧产生最大气体压力时活塞的位置,而这个位置的改变可经由点火正时的改变来达成,最理想的点火正时角度就是要让燃烧过程完成一半时,活塞位置恰抵达上死点,此时活塞正好完成压缩行程准备往下运动,因此燃烧所产生的最高压力可完全用来把活塞往下推,这就是产生最大燃烧速度点火正时。
三、影响淬熄的因素
淬熄主要受到燃烧室的形状、汽缸壁的温度与粗糙度的影响。淬熄的发生是主要是由于火焰接触到燃烧室的壁面,因此要在相同的燃烧室容积下使燃烧室的表面积越小,减少淬熄量,一般而言燃烧是的形状越规则越能达到此目的。而淬熄也是热导传的结果,所以燃烧室的温度越高,则热传量越少,火焰也就越能接近壁面,淬熄层就越薄,被淬熄的气体容积就越少。但是汽缸壁的温度却被材料所能承受的热应力及爆震的发生所限制,所以只能维持在一相当的低温下。此外,降低燃烧室的粗糙度也可减少淬熄量及热传量,提高热效率。
二、爆震
‘爆震’是引擎燃烧过程中所产生的异常燃烧现象,它除了使引擎震动加剧外,并产生敲击声、降低引擎出力、损伤引擎结构。爆震可说是引擎设计者的天敌,许多提升马力、降低油耗、减少污染的设计,如高压缩比、增压装置、提高汽缸壁工作温度(材料科技的进步使得强度上无虞)等,都因为爆震的产生而受到限制。
爆震的特性是开始时点火及燃烧波的传播都正常,但是最后应该燃烧的一部份油气,我们称为‘尾气’(End Gas),因为受了燃烧后气体膨胀所造成的压缩作用,使其体积缩小、温度和压力升高,在燃烧波尚未传到该处之前,一部份油气的温度已经达到‘自燃点’,到达自燃点后在经过一段时间的‘自燃点火延迟’后就会自行引燃,并且以300m/s~200m/s的速度迅速向外传播,而当正常燃烧和爆震两个方向相反的燃烧压力波相遇时,会产生剧烈的气体震动,并发出特有的金属撞击声,所以称为‘爆震’。轻微的爆震无法被人的感官所察觉,在此我们称它为‘无感爆震’,因此当你能感觉得到引擎爆震所产生的噪音和震动时,这时的爆震情况已经严重得超乎你的想象,我们称它为‘有感爆震’。有感爆震持续一段时间后,将使得活塞、汽缸头、汽门、活塞环等,产生严重的损坏。
1、燃料的辛烷值
燃料的抗爆震性是以辛烷值(Octane Number)来表示,通常分子构造简单、碳数多、炼长者的抗爆震性优秀,而选用辛烷值较高的汽油是减少爆震发生的最直接方法。汽油辛烷值的选用必须与引擎的缩比配合,理论上压缩比8~9用辛烷值92~95的汽油,压缩比9~10用辛烷值95~100的汽油,否则压缩比高的引擎若使用辛烷值低的汽油,将造成爆震连连、引擎无力、过热、机件损耗。而压缩比低的引擎若误用辛烷值较高的汽油,不但不能增大引擎的出力,反而可能因燃烧温度过高造成引擎过热。据报载:中油将在民国87年底前推出辛烷值98的汽油。
2、燃烧室的设计
火星塞的的位置影响了完成燃烧所需的时间,这段时间就是尾气所受的加压和加热时间,时间的长短直接影响爆震发生的趋势。因此燃烧是的形状若能让压缩时油气的流动性佳、没有死角,并采用热传导效率较高的材料(如铝合金),让汽缸内的温度不易累积,使尾气保持较低的温度也可减少爆震的发生。
3、积碳
燃烧室内如果有积碳会影响燃烧室的散热并造成压缩比的提高,让原本不会发生爆震的引擎也发生爆震。积碳发生的原因除了引擎本身所产生的以外,在汽油中添加辛烷值提升剂更会加速积碳的累积。以国内所能买到的95无铅汽油,对很多高压缩比引擎来说并不够用,很多车主都要选择添加辛烷值提升剂来维持引擎的出力和消除爆震,在爆震与积碳的恶性循环下,添加辛烷值提升剂就有如引鸩止渴一般,还请车主三思。
4、压缩比
引擎的热效率是与其压缩比成正比,压缩比越高引擎出力越大,但是压缩比的上限却因为爆震的发生而受到所限制,压缩比与爆震的发生有极密切的关系,压缩比越大,爆震的趋势和强度越强。因为提高压缩比会同时增加汽缸内的温度和压力,使尾气的温度和压力升高,增强爆震的趋势。此外压缩比的提高也会让汽缸内的残留废气对油气的冲淡做降低,造成燃烧室的温度上升,促成爆震的发生。
5、空燃比
油气混合比过稀或混合不均匀都会造成爆震。较浓的油气将使尾气的自燃点火延迟时间增加,但也会使燃烧较不完全,产生的热量较少,使得燃烧最后的温度降低,减少爆震的发生,但也导致燃料用量增加,热效率下降,同时降低引擎出力。有些引擎的爆震控制系统就是在爆震感知器侦测出爆震讯号时,供油系统便会适度的提高油气浓度,直到爆震消除为止。
6.进气温度与汽缸温度
进气温度与汽缸温度的增加会使引擎的容积效率降低,使完成燃烧所需的时间增长,亦即尾气被加压及加热的时间增长,增加尾气的温度和压力,造成爆震。由此我们可以知道当引擎温度过高时,对引擎所成的损害并不是直接由于高温所造成(和汽缸内的温度相比那就称不上高温了),而是因为汽缸壁温度上升导致严重的爆震,因为连连的爆震所产生的严重破坏。
7、点火正时
若点火过早活塞在压缩行程抵达上死点前燃烧掉的油气较多,会使活塞进行压缩时所需的力量增加,同时也会提高燃烧室内的最高温度与压力,而易产生爆震。若点火正时延迟,大部分的油气都在活塞过了上死点以后燃烧,燃烧时活塞已经往下运动,可以底消掉一部份燃烧后气体膨胀所导致的压力升高作用,减轻爆震的趋势。不过假如点火过于落后,引擎的功率及效率都将降低。虽然点火正时的延迟会造成引擎无力、耗油增加,但是对于爆震控制方式的选择大多以改变点火正时为主,因未改变点火正时比起其他消除爆震的方法要来得简单、经济、可行,尤其在电子技术发展成熟的今天更是如此。
8、进气压力
进气压力提高可使油气密度变大,燃烧所产生的总热量较多,会使燃烧的最后温度上升,易于产生爆震。这说明了使用增压进气装置时,不论涡轮增压或机械增压常要适度的配合降低压缩比,并结合爆震控制系统以防止爆震的发生。其中涡轮增压系统(Turbo Charger)更因为会同时造成进气温度上升,所以有进气冷却器(Inter-Cooler)的出现,以降低进气温度提高容积效率并减少爆震的发生。
5.引擎的改装
引擎内部组件的改装主要是利用轻量化、高强度的材料制成的高精密度组件以减少内部动力的损耗,除了达到动力提升的目的更要兼顾可靠度及平衡性提升。要兼顾轻量化和高强度则有赖材料科技的进步,由于高科技合金或复合材料的应用配合上精密加工技术,使得现代的高性能引擎不但单位容积所能产生的马力大幅提升,可靠度及经济性也能同时获得改善。笔者在此必须再次强调:引擎内部组件改装并不全然是为了马力的提升,更重要的是为了引擎的可靠度及平衡性。在引擎的改装规则里是没有妥协的,‘失之毫 差之千里’、‘吹毛求疵’用在这里是最适当不过了。
汽门的改装:
汽门的科技在过去几年有很大的进步,主要的改变在于材质的进步及精密度的提高。高效率的进、排气,环保法规的要求,均有赖材质精良的汽门。而汽门改装的原则是:在不影响强度的情况下尽可能的减轻汽门的重量。动作精确的汽门是高性能引擎的基本要件,专业改装厂通常会提供不同的汽门组合供消费者选择,引擎改装项目越多汽门机构的精确度的要求就越严格,所以设定汽门时必须要同时考虑与凸轮轴及汽门摇臂的配合。原厂的汽门通常都有适当的材质和大小,但是如果有需要的话可适度的换上较大或较小尺寸的。汽门的材质是很重要的,目前的改装用汽门通常用钛合金作为材料以求强度的提升及轻量化的要求,但是一套钛合金的汽门价格并不低。而有的是将汽门的背部切削或用中空的设计以达到轻量化的目的,又有时会把汽门表面做成漩涡状,以利在汽门开启时能气体的流动。汽门的热度可经由与汽门座接触时经由汽门座传出达到散热的目的,是汽门最重要的散热途径。因此,汽门座的配置必须非常谨慎,假如太靠近汽门的边缘或是汽门边缘太薄了就可能造成密合度不良。此外汽门套筒和汽门间的精密度及表面平滑度,汽门摇臂与汽门固定座间的表面精度都必须严格要求否则在高转速时将会导致严重的损害。汽门弹簧的强度设定必须恰到好处,要兼顾汽门的密合度又不能造成开启时的困难,如果弹簧强度大过以致凸轮轴开启汽门时负荷过重对马力输出是非常不利的。汽门的固定座也是个潜在的问题,这个装置是用夹子把弹簧固定在汽门 上,这在急加速及扬程大的的引擎上会造成扭曲或断裂,因此也必须配合做改变。 原厂的汽门摇臂在引擎转速上限提高及气门正时改变时就会变得不敷需求,对改装过的引擎来说强化的汽门摇臂是必须的,扬程太大的凸轮轴会造成汽门摇臂的扭曲,因此强度的提升及轻量化都是必须的。对一般的汽门来说,滚筒式的摇臂能减少与汽门座接触表面的压力,也能承受较高来自推 的压力。通常汽门摇臂若有圆滑的表面和滚动的轴承,会使运转时得摩擦阻力变小,摩擦阻力越小所消耗的动力就越少。
活塞,活塞环:
活塞顶面与汽缸头之间形成燃烧室,因此活塞必须承受来自引擎燃烧后产生的热和爆发力。油气燃烧所产生的热由活塞的顶部所吸收,并传至汽缸壁,而燃烧后气体膨胀所产生的力量也必须经由活塞来吸收,活塞会把燃烧气体压力及惯性力经由连杆传到曲轴上,利用连杆的作用将活塞的线性往复运动转换曲轴的旋转运动。在转换的过程中除了在上死点与下死点之外,活塞会对对汽缸滑移产生一个侧推力。活塞环是曲轴箱和汽缸间的屏障。以机能来分,活塞环分为气环和油环两种,普通引擎每个活塞各有1~2个气环及油环。活塞环能维持汽缸内的气密性,使汽缸与曲轴箱隔绝开来,让燃烧室的气体压力不致流失,并能避免未完全燃烧的油气对曲轴箱内的机油造成污染及劣化。它能经由与汽缸壁的接触把活塞所受的热传至汽缸壁、水套,更重要的是它能防止过多的机油进入燃烧室,并让机油均匀的涂满汽缸壁。 引擎运转时产生的热越多表示所爆发的力量也越大,这些热量也对高性能引擎造成问题。现代的活塞设计主要有铸造和锻造两种,而铸造又比锻造来得简单便宜,但却无法如锻造活塞承受较大的热度和压力。通常改装厂在设计锻造活塞时,都会同时利用改变活塞顶部的形状来达到提高压缩比的目的,但问题是选择锻造活塞时多少的压缩比才是适当的。以汽油引擎来说,压缩比超过12.5:1时燃烧效率就不容易再提升。利用活塞顶部的形状改变来提高压缩比时,随着压缩比的提高会使汽缸顶部燃烧室的空间变小,活塞顶部可能导致爆震的发生。对高压缩比活塞来说,由于必须保留汽门做动所需的空间,因此会在活塞顶部切出汽门边缘形状的凹槽,如果没有这个凹槽,当活塞到达上死点时可能就会打到汽门,因此改装了高压缩比活塞后对汽门动作精确度的要求就必须非常严格。这凹槽的大小也必须配合凸轮轴及汽门摇臂的改装而改变。不锈钢及特殊合金的活塞环已广泛应用在赛车及改装套件市场,这些特殊设计的合金活塞环可以在活塞往上行时释放压力,但在往下爆发行程时却能保持密闭的状态以维持压力,这种活塞环虽然贵但是却能有效的提高引擎效率。由于活塞与活塞环都必须在高温、高压、高速及临界润滑的状态下工作,因此长久以来改装厂都为了提供最佳设计而努力,但引擎的性能是所有机件整合的结果,因此选择活塞套件时必须考量凸轮轴的正时角度、供由系统的配合才能找出最佳搭配组合。
活塞连杆:
活塞连杆最基本的功能是连结活塞和曲轴,把直线的活塞运动转换成曲轴的旋转运动。在引擎转时连杆会承受油气燃烧产生的爆发力,这个爆发力会使连杆有扭曲的趋势,连杆也是所有引擎组件中承受负荷最大的组件。由于连杆是把活塞的直线运动转换成曲轴的旋转运动,因此在活塞上下运转时连杆会不断的加速及减速,尤其在活塞抵达上死点时连杆的运动方向会由往上突然减速至停止,并立刻改变运动方向,这是最容易造成连杆损害的。在爆发行程时,燃烧产生的高压气体可变成连杆运动的缓冲,插销、波斯所承受的负荷也会减轻。但是在排气行程的时候活塞、活塞环、插销及连杆本身的部份重量所造成的惯性力都会加诸在插销及波斯之上,如果这时连杆出了问题那下场就是你的引擎要进厂大修了。现在的赛车引擎大多使用锻造的合金连杆,连杆的品质关系着引擎的可靠度,但是却无法以肉眼检视连杆的品质或瑕疵,必须以特殊的非破坏检验或X光做检测,这是选购及改装连杆时最大隐忧。连杆各项尺寸精密度的要求会随着压缩比及运转转速的提高而提高,即使仅是千分之几寸的尺寸误差在高转速时都会?

热点内容
服务器和路由器属于什么设备 发布:2025-04-03 12:25:43 浏览:873
新手学java7编程 发布:2025-04-03 12:17:27 浏览:871
某宝算法 发布:2025-04-03 12:12:26 浏览:284
脚本模拟鼠标点击 发布:2025-04-03 12:06:19 浏览:317
老安卓接口是什么 发布:2025-04-03 11:57:31 浏览:762
nginx资源服务器搭建 发布:2025-04-03 11:44:52 浏览:406
安卓开发和嵌入式哪个难 发布:2025-04-03 11:25:09 浏览:318
ftp链接本地虚拟机 发布:2025-04-03 11:25:02 浏览:793
手机扣扣怎么找回密码 发布:2025-04-03 11:24:17 浏览:223
安卓平板上做记事本哪个好用 发布:2025-04-03 11:21:27 浏览:865