井筒水压缩量
A. 井筒设计前,施工井筒检查孔的基本要求有哪些
井筒检查孔布置
【规程条文】第二十五条 井筒设计前,必须按下列要求施工井筒检查孔:
(一)立井井筒检查孔距井筒中心不得超过25m,且不得布置在井筒范围内,孔深应当不小于井筒设计深度以下30m。地质条件复杂时,应当增加检查孔数量。
(二)斜井井筒检查孔距井筒纵向中心线不大于25m,且不得布置在井筒范围内,孔深应当不小于该孔所处斜井底板以下30m。检查孔的数量和布置应当满足设计和施工要求。
(三)井筒检查孔必须全孔取芯,全孔数字测井;必须分含水层(组)进行抽水试验,分煤层采测煤层瓦斯、煤层自燃、煤尘爆炸性煤样;采测钻孔水文地质及工程地质参数,查明地质构造和岩(土)层特征;详细编录钻孔完整地质剖面。
【执行说明】井筒检查孔的数量应当综合考虑拟建井筒矿井地质类型和设计施工要求确定,并满足《煤矿井巷工程施工规范》(GB 50511—2010)对井筒检查钻孔的规定、对巷道地质预测及地质报告内容的相关要求。
检查孔距井筒中心的距离不超过25m,以不影响井筒施工又不偏离井筒太远为原则,能够较准确反映井筒施工时的水文地质条件。
检查孔的孔深要求是由于目前建井深度普遍增加,水文地质和工程地质条件偏于复杂,井筒深度可能调整,考虑《煤矿地质工作规定》(安监总煤调〔2013〕135号)中地质补勘钻孔深度的要求综合确定。
检查钻孔技术要求:
1. 井筒检查孔的终孔直径不小于89mm,基岩抽水段的孔径不小于108mm。检查钻孔的终孔深度和层位要严格按照施工设计。
2. 检查钻孔应全孔取芯,并采用物探测井法核定层位。其采取率在冲积层和基岩中,不小于75%;在矿层破碎带、软弱夹层中,不宜小于60%。岩芯必须编号,装箱保存。
3. 在检查钻孔穿过的岩层中,每层应采取一个样品,进行物理性能测定。当岩层成分变化大,层厚超过5m时,应适当增加取样数目。2、3、4号煤层,其顶板和底板应单独取样。
4. 检查钻孔的倾角和方位角,每钻进20~30m,应测定一次。钻孔偏斜率,应小于或等于1.5%。
5. 钻孔通过的各类岩层,应根据施工需要进行物理力学性能试验。其试验测定的项目应包括下列内容;
(1)砂层:颗粒成分、湿度、容重、密度、孔隙度、渗透系数、内摩擦角。
(2)土层:容重、密度、湿度、孔隙度、可塑性、内摩擦角、内聚力、抗压强度、膨胀性。
(3)接近细砂、粉砂层的亚粘土和轻亚粘土层的颗粒分析和不均匀系数。 (4)其他岩层包括容重、抗压强度、抗剪强度、内摩擦角、泊松比。
(5)对检查钻孔中各主要含水层,应分层进行抽水试验。抽水试验中,水位降低不宜少于3次,稳定时间不得少于8h,每次降距宜相等,当条件困难时,每次降距不应小于1m,每层抽水的最后一次水位降低时,应采取水质分析样,同时测定水温和气温。
6. 检查钻孔钻进结束后,应采用水泥砂浆严密封堵,其抗压强度不应低于10MPa。封孔前应清除孔壁和孔底的岩粉,并根据钻孔内的水质和水温选择封孔材料。封孔后应设立永久性标志,以备查核。
B. 选择井筒位置和井筒形式时应考虑哪些因素
一、井田开拓方式的概念井田开拓:由地表进入煤层为开采水平服务所进行的井巷布置和采掘工程称为井田开拓。矿井开拓方式:矿井井筒形式、开采水平数目及阶段内的布置方式的总称。二、井田开拓方式的分类1.按井筒形式(1)立井 (2)斜井(3)平硐 (4)综合2.按阶段内布置方式(1)采区式 (2)分段式 (3)带区式3.井筒形式+开采水平+阶段内布置方式三、确定井田开拓方式的原则1.合理确定矿井生产能力,井田范围,进行井田内的划分,确定井田开拓方式,井筒数目及位置;2.选择主要运输大巷布置方式及井底车场形式;3.确定井筒延伸方式及井田开采顺序;基本原则:(1)多出煤、早出煤、出好煤、建设高产高效安全生产矿井创造条件,集中,简单;(2)按《规程》完善通风条件,良好生产条件;(3)减少煤柱损失,减少巷道维护量,提高矿井采出率;(4)减少工程量,降低投资,减少建工工期;(5)新技术机械化、自动化的推广创条件;(6)考虑煤质、煤种区别。
C. 井筒深度是560米,水从地面到井下的压力差是多少兆帕 用水主管路减压阀使用都少公斤压力的
大约5.6兆帕
D. 井筒的作用是什么10~20米超深检查井预制井筒能做到多高
检查井的井桶高度是指井底板到井口的高度;井室的高度是指排水溜槽以上的井筒到井口缩径下部高度。井室,是人在井内能够进行相关操作的空间。检查井的溜槽,同管底标高相同,当人进入检查井时,要站流水槽两侧。
E. 井筒压力分布计算的目的
试油测试技术和资料综合评价技术
许 显 志
试油测试是油气勘探取得成果的关键,是寻找油气田、了解地下情况的最直接手段,也是为 开发提供科学依据的重要环节。试油测试工艺技术的发展经历了三个阶段,即以常规试油 为代表的第一阶段,以地层测试器试油为代表的第二阶段,以地层测试器、电子压力计和三 相分离器等技术综合应用的第三阶段。第三阶段,在引进、消化、推广国内外试油技术及 装备的基础上 ,针对大庆探区“三低”油层及致密气层的地质特点,全面发展和完善了试 油 测试工艺技术。资料解释技术也从手工计算、绘图发展到全国应用计算机进行解释,油藏评 价从简单的试井分析向油气层综合解释、评价方向发展。目前已形成了具有大庆油田特点的 试油测试工艺和资料综合解释技术系列,为勘探提供了先进的手段,为大庆探区众多油气 藏的发现和储量的提交作出了重要的贡献。�
一、测试技术的配套、完善,促进了地质认识水平和勘探效益的提高��
测试技术经过“七五”的引进、消化、吸收和使用国内、外工艺技术和装备,“八五”期间 ,针对在大庆探区的地质特点进行了发展和完善,到“八五”末和“九五”初期,逐步形成 了满足不同井况、不同地层条件和不同地质目的的测试技术。�
(一)砂泥岩储层中途测试技术�
中途测试技术是及早发现工业油气层的重要手段。1991年以前由于MFE单封隔器很难实现分层 测试,使中途测试技术受到了限制。我们在引进膨胀式测试工具的同时,对选层标准、封隔 器座封位置、测试制度和施工参数设计等方面进行了详细研究,拓宽了中途测试的使用范围 ,在勘探中取得了明显的经济效益。�
1.利用中途测试技术及早发现油气藏�
延4井位于延吉盆地顶部坳陷德新凹陷南阳东构造带,钻井过程中,从井519m开始多次井 喷。通过对497.0~522.3m中途测试,日产天然气11563m��3�,为工业气层。这是延 吉盆地首次获工业气流,为下步勘探提供了科学依据。�
2.利用中途测试成果确定完井方法�
目前,大庆油田的完井方法有两种,一种是套管完井,一种是裸眼完井,采用哪种方法完井 视井的情况而定。我们利用中途测试在完井方面做了一些工作,收到了明显的效果。和3井 、万111井、渔深1井和延1井,都是根据中途测试结果,采用裸眼完井的,4井口仅套管和固 井费用就节约了222.0万元。�
3.利用中途测试技术取准有关地层参数�
渔深1井,位于松辽盆地北部中央坳陷区黑渔泡凹陷通达鼻状构造带。由于该地区泉一段缺 少水性和压力资料,所以在2304.0~2301.4m进行中途测试,日产水56.2m��3�。本次 测试不仅搞清了水性,而且录取到了地层压力,达到了中途测试目的。�
4.利用中途测试技术提高勘探试油效益�
大庆长垣西部具有多套油气层组合。限期进行中途测试,搞清油气水纵向分布规律,避免套 管完井后的井筒复杂化。�
英41井是大庆长垣西部的一口预探井,先后分别对三个层系进行了中途测试。该井套管完井 后,根据中途测试结果避开油水同层和气水同层,共试油6层,其中有3层获工业气流,获得 了理想的试油成果。如果不搞中途测试,套管完井后可能要搞9层以上试油,这样,不仅井 筒复杂,而且开发无法利用。� (二)地层测试技术�
地层测试工艺具有试油周期短、录取资料全(可以录取压力、产量、温度和高压物性等资料 ) 、效益高的特点,在全国各油田得到了广泛的应用,大庆外围探井地层测试率1983年15.82% ,1990年以后一直保持在60%以上。�
1、低渗透层测试技术�
针对低渗透层的特点,从试井设计出发,配套完善了低渗透层的测试技术,收得了较好的效 果。�
(1)试井设计方法�
试井设计是试油地质设计编制科学与否的关键,也是取全取准试油资料的保证。从试井理论 可知,试井设计是试井分析的反问题,即通过基本的地层参数,预测出待试层的产量和压力 变化曲线。 所以,根据试井理论,研制开发了试井设计软件,能对自喷井和非自喷井进行 压降、压恢和探边试井设计,特别是非自喷井试井设计功能在国内首次实现。�
(2)
F. 请教一下试油计算地层水的问题
由于井筒和措施液都不是地层实际所产,因此排出水量要扣掉井筒容积(井容)和措施液量,余下的才认为是地层所产水量,理论上是这么要求和计算的,但实际产出水量有可能是地层水和井筒水或措施液的混合液。这只是为了统一要求而已,是不是地层水还要参考水性分析来定。
G. 油田系统效率评价中区块中的d,e,f,g是指什么
探砂面 冲砂 探砂面是下入管柱实探井内砂面深度的施工。通过实探井内的砂面深度,可以为下步下入的其它管柱提供参考依据,也可以通过实探砂面深度了解地层出砂情况。如果井内砂面过高,掩埋油层或影响下步要下入的其它管住,就需要冲砂施工。 冲砂是向井内高速注入液体,靠水力作用将井底沉砂冲散,利用液流循环上返的携带能力,将冲散的砂子带到地面的施工。冲砂方式一般有正冲砂、反冲砂和正反冲砂三种。 洗井 洗井是在地面向井筒内打入具有一定性质的洗井工作液,把井壁和油管上的结蜡、死油、铁锈、杂质等脏物混合到洗井工作液中带到地面的施工。洗井是井下作业施工的一项经常项目,在抽油机井、稠油井、注水井及结蜡严重的井施工时,一般都要洗井。 正洗井 洗井工作液从油管打入,从油套环空返出。正洗井一般用在油管结蜡严重的井。 反洗井 洗井工作液从油套环空打入,从油管返出。反洗井一般用在抽油机井、注水井、套管结蜡严重的井。 通井 、刮蜡、刮削 用规定外径和长度的柱状规,下井直接检查套管内径和深度的作业施工,叫做套管通井。套管通井施工一般在新井射孔、老井转抽、转电泵、套变井和大修井施工前进行,通井的目的是用通井规来检验井筒是否畅通,为下步施工做准备。通井常用的工具是通井规和铅模。 下入带有套管刮蜡器的管柱,在套管结蜡井段上下活动刮削管壁的结蜡,再循环打入热水将刮下的死蜡带到地面,这一过程叫刮蜡(套管刮蜡)。 套管刮削是下入带有套管刮削器的管柱,刮削套管内壁,清除套管内壁上的水泥、硬蜡、盐垢及炮眼毛刺等杂物的作业。套管刮削的目的是使套管内壁光滑畅通,为顺利下入其它下井工具清除障碍。 油井(检泵)作业 从地层中开采石油的方法可分为两大类:一类是利用地层本身的能量来举升原油,称为自喷采油法;另一类是由于地层本身能量不足,必须人为地用机械设备给井内液体补充能量,才能将原油举升到地面,称为人工举升采油法或机械采油法。目前,油田人工举升方式主要有气举、有杆泵采油和无杆泵采油。 有杆泵采油包括抽油机有杆泵和地面驱动螺杆泵。无杆泵采油包括电动潜油泵、水力活塞泵、射流泵等。无论采用什么举升采油方式,由于油田开发方案调整、设备故障等原因,需要进行检(换)泵作业。本章着重介绍抽油机有杆泵(简称抽油泵)、地面驱动螺杆泵(简称螺杆泵)、电动潜油泵(简称电潜泵)、水力活塞泵的作业方法。 检(换)抽油泵 抽油机有杆泵采油是将抽油机悬点的往复运动通过抽油杆传递给抽油泵,抽油泵活塞上下运动带出井内液体的采油方式,是目前各油田应用最广泛的一种人工举升采油方式,约占人工举升井数的90%左右。它主要由抽油机、抽油泵、抽油杆及配套工具所组成。 由于井下抽油泵发生故障应进行检泵。两次检泵之间的时间间隔称为检泵周期。油井的产量、油层压力、油层温度、出气出水情况、油井的出砂结蜡、原油的腐蚀性、油井的管理制度等诸多因素都会影响检泵周期的长短。 抽油井由于事故检泵的原因一般有以下几种: 1、油井结蜡造成活塞卡、凡尔卡,使抽油泵不能正常工作或将油管堵死。 2、砂卡、砂堵检泵。 3、抽油杆的脱扣造成检泵。 4、抽油杆的断裂造成检泵。 5、泵的磨损漏失量不断增大,造成产液量下降,泵效降低,需检泵施工。 6、抽油杆与油管发生偏磨,将油管磨坏或将接箍、杆体磨断,需检泵施工。 7、油井的动液面发生变化,产量发生变化,为查清原因,需检泵施工。 8、根据油田开发方案的要求,需改变工作制度换泵或需加深或上提泵挂深度等。 9、其它原因:如油管脱扣、泵筒脱扣、衬套乱、大泵脱接器断脱等造成的检泵施工等。 检泵作业施工主要包括以下施工工序: 施工准备、洗井、压井、起抽油杆柱、起管柱、刮蜡、通井、探砂面、冲砂、配管柱、下管柱、下抽油杆柱、试抽交井、编写施工总结等。 潜油电泵井作业 潜油电泵全称电动潜油离心泵,简称电泵,是将潜油电机和离心泵一起下入油井内液面以下进行抽油的井下举升设备。潜油电泵是井下工作的多级离心泵,同油管一起下入井内,地面电源通过变压器、控制柜和潜油电缆将电能输送给井下潜油电机,使电机带动多级离心泵旋转,将电能转换为机械能,把油井中的井液举升到地面。近些年来,国内外潜油电泵举升技术发展很快,在油田生产中,特别是在高含水期,大部分原油是靠潜油电泵生产出来的。电潜泵在非自喷高产井或高含水井的举升技术中将起重要的作用。 典型的潜油电泵井的系统它主要由三部分组成: (1)地面部分:地面部分包括变压器、控制柜、接线盒和特殊井口装置等。 (2)中间部分:中间部分主要有油管和电缆。 (3)井下部分:井下部分主要有多级离心泵、油气分离器、潜油电机和保护器。 上述三部分的核心是离心泵、油气分离器、潜油电机、保护器、潜油电缆、变压器和控制柜七大部件。 潜油电泵井的系统组成 1-变压器;2-控制柜;3-电流表;4-接线盒; 5-地面电缆;6-井口装置;7-圆电缆; 8-泄油阀;9-电缆接头;10-单流阀;11-扁电缆;12-油管;13-泵头;14-泵;15-电缆护罩; 16-分离器;17-保护器;18-套管;19-潜油电机;20-扶正器 潜油电泵井作业程序 1、下泵作业 起原井管柱、套管刮蜡、洗井冲砂、探人工井底、测井径、通井、下丢手管柱、换套管头、井下机组下井前的地面检查、井下机组联接、电机和保护器注油、相序检查、电缆安装和下井、单流阀和泄油阀的安装、井口安装、安装电泵井口流程、启泵投产。 2、电泵起出施工 起机组前的准备、起出油管、起出电缆、起出机组、起出设备评价和运回设备。 第四章 常规注水井作业 分层注水工艺原理 油田注水是保持油层压力,使油井长期高产稳产的一项重要措施,目前我国各油田大部分都采用注水的方法,给油层不断补充能量,取得了较好的开发效果。油田注水的目的是提高地层压力,保持地层能量,以实现油田稳产高产,提高最终采收率。由于不同性质的油层吸水能力和启动压力有很大差别,采用多层段笼统注水,将使高渗透层与低渗透层之间出现层间干扰。 通过矿场试验证实,在长期笼统注水条件下,就单井而言,每口井都有干扰现象;就层段而言,大部分层段有干扰现象。注水要求是分层定量注水,在注水井通过细分层段实行分层配注,有利于减少层间干扰,解决层间和平面矛盾,改善吸水剖面,提高驱油效率,以便合理控制油井含水和油田综合含水上升速度,提高油田开发效果。 分层注水管柱 分层配水管柱是实现同井分层注水的重要技术手段。分层注水的实质是在注水井中下入封隔器,将各油层分隔,在井口保持同一压力的情况下,加强对中低渗透层的注入量,而对高渗透层的注入量进行控制,防止注入水单层突进,实现均匀推进,提高油田的采收率。我国油田大规模应用的分层配水管柱有同心式和偏心式两种。前者可用于注水层段划分较少较粗的油田开发初期,后者适用于注水层段划分较多较细的中、高含水期。此外,还有用于套管变形井的小直径分层配水管柱。 注水井井下工具 封隔器:扩张式封隔器、压缩式封隔器 配水器:固定式分层配水器、活动式配水器、偏心配水器 压 裂 压裂是指在井筒中形成高压迫使地层形成裂缝的施工过程。通常指水力压裂,水力压裂是指应用水力传压原理,从地面泵入携带支撑剂的高压工作液,使地层形成并保持裂缝,是被国内、外广泛应用的行之有效的增产、增注措施。由于被支撑剂充填的高导流能力裂缝相当于扩大了井筒半径,增加了泄流面积,大大降低了渗流阻力,因而能大幅度提高油、气井产量,提高采油速度,缩短开采周期,降低采油成本。 压裂设备及管柱 一、地面设备 1、压裂井口 压裂井口一般可分为两类: ①用采油树压裂井口。 ②采用大弯管、投球器、井口球阀与井口控制器的专 用压裂井口。 2、压裂管汇 目前压裂管汇种类很多,承压和最大过砂能力也不相同。常用的有压裂管汇车和专用的地面管汇。专用的地面管汇有8个连接头,压裂车可任选一个连接。高压管线外径Ф76mm,内径Ф60mm,最高压力可达100MPa。 3、投球器 投球器有两种,一种是前面井口装置中用于分层压裂管柱中投钢球的投球器,另一种是选压或多裂缝压裂封堵炮眼用投球器。美国进口投球器,最大工作压力100MPa,一次装Ф22mm的堵球200个,电动旋转投球每分钟12圈,每圈投4个球。 二、压裂车组 压裂设备主要包括压裂车、混砂车、仪表车、管汇车等。 1、压裂泵车 压裂车是压裂的主要动力设备,它的作用是产生高压,大排量的向地层注入压裂液,压开地层,并将支撑剂注入裂缝。它是压裂施工中的关键设备,主要由运载汽车、驱泵动力、传动装置、压裂泵等四部分组成。 2、混砂车 混砂车的作用是将支撑剂、压裂液及各种添加剂按一定比例混合起来,并将混好的携砂液供给压裂车,压入井内。目前混砂车有双筒机械混砂车、风吸式混砂车和仿美新型混砂车。混砂车主要由供液、输砂、传动三个系统组成。 3、其它设备 除了压裂车、混砂车主要设备外,还有仪表车、液罐车、运砂车等。仪表车是用于施工时,记录压裂过程各种参数,控制其它压裂设备的中枢系统,又称作压裂指挥车。 三、压裂管柱 压裂管柱主要由压裂油管、封隔器、喷砂器、水力锚等组成。目前井下管柱可分为笼统压裂管柱和分层压裂管柱。 1、压裂油管 压裂应使用专用油管。抗压强度应满足设计要求。浅井、低压可用J55钢级,内径Ф62mm油管(外径φ73mm);中深井和深井使用N80或P105的内径Ф62mm或Ф76mm外加厚油管,最高限压分别是70Mpa和90Mpa。 2、封隔器 目前压裂用封隔器种类较多,浅井使用扩张式或压缩式50℃低温胶筒封隔器。深井使用扩张式、压缩式或机械式90℃以上胶筒封隔器。深井大通径CS-1封隔器,工作压力105Mpa,工作温度可达177℃。 3、喷砂器 喷砂器主要作用一是节流,造成压裂管柱内外压差,保证封隔器密封;二是通往地层的通道口,使压裂液进入油层,三是避免压裂砂直接冲击套管内壁造成伤害。 4、压裂管柱 压裂管柱一般分为笼统压裂管柱和分层压裂管柱。 1)笼统压裂管柱 笼统压裂管柱结构为:油管+水力锚+封隔器+喷嘴。 2)分层压裂管柱 分层压裂管柱包括: ①双封卡单层:Ф73mm或Ф88.9mm外加厚油管+水力锚+封隔器+喷砂器+封隔器+死堵。压裂之后可以用上提的方法压裂其它卡距相同层段。 ②三封卡双层:Ф73mm或Ф88.9mm油管+水力锚+封隔器+喷砂器(带套)+封隔器+喷砂器(无套)+封隔器+死堵。可以不动管柱压裂二层。 ③四封卡三层:Ф73mm或Ф88.9mm油管+封隔器+喷砂器(甲套)+封隔器+喷砂器(乙套)+封隔器+喷砂器(丙无套)+封隔器+死堵。可以不动管柱压裂三层。 在压裂管柱的丈量和组配过程中要考虑到油管由于温度效应、活塞效应、膨胀效应、弯曲效应引起的油管长度变化。 第二节 压裂液 压裂液的主要作用,是将地面设备的能量传递到油层岩石上,将油层岩石劈开形成裂缝,把支撑剂输送到裂缝中。压裂液在施工中按不同阶段的作用可分为前置液、携砂液、顶替液三种。 为了压裂施工的顺利实施,要求压裂液具有低滤失性、高携砂性、降阻性、稳定性、配伍性、低残渣、易返排等性能。随着石油工业的发展,压裂施工的规模越来越大,压裂液用量越来越大,因而压裂液还应具备货源广、成本低,配制简单等特点,以满足大型压裂和新井压裂施工。 压裂液主要分为水基压裂液、油基压裂液、乳化压裂液、泡沫压裂液、醇基压裂液、表面活性剂胶束压裂液(清洁压裂液)和浓缩压裂液等。水基压裂液成本低、使用安全,因而应用广泛。目前世界上约有70%以上的压裂作业采用的胍胶和羟丙基胍胶水基压裂液,泡沫压裂液约占总用量的25%,而油基压裂液使用很少,占5%。 支撑剂 支撑剂是水力压裂时地层压开裂缝后,用来支撑裂缝阻止裂缝重新闭合的一种固体颗粒。它的作用是在裂缝中铺置排列后形成支撑裂缝,从而在储集层中形成远远高于储集层渗透率的支撑裂缝带。使流体在支撑裂缝中有较高的流通性,减少流体的流动阻力,达到增产、增注的目的。 为了适应各种不同地层以及不同井深压裂的需要,人们开发了许多种类的支撑剂,大致可分为天然和人造两大类。支撑剂性能主要是物理性能和导流能力。 目前常用的支撑剂有天然石英砂和人造支撑剂陶粒 石英砂多产于沙漠、河滩或沿海地带。如美国渥太华砂、约旦砂和国内兰州砂、承德砂、内蒙砂等。天然石英砂的矿物组分以石英为主。石英含量(质量百分比)是衡量石英砂质量的重要指标,我国压裂用石英砂中的石英含量一般在80%左右,在天然石英砂的石英含量中,单晶石英颗粒所占的质量百分比愈大,则该种石英砂的抗压强度愈高。 一、滑套式管柱分层压裂工艺 1、管柱结构:由投球器、井口球阀、工作筒和堵塞器、多级封隔器和多级喷砂器组成。所用的封隔器以扩张式为主,特殊情况也可以用压缩式的;也可以根据施工需要,用尾喷嘴和水力锚配合滑套式喷砂进行混合组配。 打捞作业 在油水井生产过程中,由于各种原因常引起井下落物和井下工具遇卡。各种井下落物在很大程度上影响着油水井的正常生产,严重时可造成停产。因此,需要针对不同类型的井下落物,选用相应的打捞工具,捞出井下落物,恢复油水井正常生产。 一、打捞作业的分类 捞出井下落物的作业过程称打捞作业。可以从不同角度对打捞作业的性质进行分类。 1、按落物种类进行划分 根据井下落物的种类可将打捞作业分成四类: (1)管类落物打捞,如油管、钻杆、封隔器、工具等。 (2)杆类落物打捞,如(断脱的)抽油杆、测试仪器、加重杆等。 (3)绳类落物打捞,如录井钢丝、电缆等。 (4)小件落物打捞,如铅锤、刮蜡片、压力计、取样器和凡尔球、牙轮等。 2、按打捞作业的难易程度划分 这是现场上按照工程处理难易程度进行分类的一种方法,分为简单打捞和复杂打捞两种。这种划分方法便于施工准备和制定施工措施。 二、常用的打捞工具 在长期的打捞实践中,人们根据不同类型的井下落物,设计出了许多相应的打捞工具。 1、管类落物打捞工具 常用来打捞管类落物的工具有:公锥、母锥、滑块卡瓦打捞矛、接箍捞矛、可退式打捞矛、可退式打捞筒、开窗打捞筒等。 2、杆类落物打捞工具 常用工具有抽油杆打捞筒、组合式抽油杆打捞筒、活页式捞筒、三球打捞器、摆动式打捞器、测试井仪器打捞筒等。 3、绳类落物打捞工具 常用工具有内钩、外钩、内外组合钩、老虎嘴等。 4、小件落物打捞工具 常用工具有一把抓、反循环打捞篮、磁力打捞器等。 5、辅助打捞工具 常用的辅助打捞工具有铅模、各种磨铣工具(平底磨鞋、凹底磨鞋、领眼磨鞋、梨形磨鞋、柱形磨鞋、内铣鞋、外齿铣鞋、裙边鞋、套铣鞋等)、各种震击器(上击器、下击器、加速器和地面下击器等)、安全接头和各种井下切割工具等。 6、大修常用钻具和井口工具 大修常用的钻具有23/8″~31/2″正反扣钻杆、31/2″~41/8″钻铤、21/2″~31/2″方钻杆。常用的井口工具有轻便水龙头、液压钳、吊钳、安全卡瓦、各种规格的活门吊卡、井口卡瓦、方钻杆补心、钻铤提升短节、接头等。 7、倒扣工具和钻具组合 常规打捞施工时常用的倒扣工具有倒扣器、倒扣捞矛、倒扣捞筒、倒扣安全接头、倒扣下击器。常用的钻具组合有两种(自下而上)。 (1)倒扣捞筒(倒扣捞矛)+倒扣安全接头+倒扣下击器+倒扣器+正扣钻杆(油管)。 (2)倒扣捞筒(倒扣捞矛)+倒扣安全接头+反扣钻杆。 三、井下落物打捞步骤 (1)下铅摸打印,以便分析井下鱼顶形态、位置。 (2)根据印痕分析井下情况及套管环形空间的大小,选择合适的打捞工具。 (3)按操作程序下打捞工具进行打捞。 (4)捞住落物后即可活动上提。当负荷正常后,可适当加快起钻速度。 解卡作业 卡钻事故按其形成的原因可分为以下几种类型: (1)油水井生产过程中造成的油管或井下工具被卡,如砂卡、蜡卡等。 (2)井下作业不当造成的卡钻,如落物卡、水泥(凝固)卡、套管卡等。 (3)井下下入了设计不当或制造质量差的井下工具造成的卡钻,如封隔器不能正常解封造成的卡钻。 4、解卡 1)砂卡的解除方法 凡是由于井内砂子造成的卡管柱或工具事故,统称为砂卡事故,简称为砂卡。砂卡的特征一般为管柱用正常悬重提不动、放不下、转不动。 2)水泥卡钻解除方法 水泥卡钻的处理可分为两种情况:一种是能够开泵循环的;另一种憋泵开不了泵的。对可开泵循环的,可用浓度为15%的盐酸进行循环,破坏水泥环进行解卡。 3)解除落物卡钻 落物卡钻原因多数是由于施工中责任心不强,或者工具构件质量低劣所造成的。如钳牙、卡瓦牙、井口螺丝、撬杠、搬手及其它小件工具等落井,将井下工具(如封隔器、套铣筒等)卡住,造成落物卡钻事故。 处理落物卡钻,切忌大力上提,以防卡死。一般处理方法有两种:若被卡管柱可转动,可以轻提慢转管柱,有可能造成落物挤碎或者拨落,使井下管柱解卡;若轻提慢转处理不了,或者管柱转不动,可用壁钩捞出落物以达到解卡的目的。 4)解除套管卡钻 套管卡钻通常分为变形卡、破裂卡、错断卡。不论处理那种形式的卡钻,都要将卡点以上的管柱取出,修好了套管,卡钻也就解除了。 5)封隔器的卡瓦卡钻 解除封隔器卡瓦卡钻可用大力上提解卡和正转的方法。具体做法是在钻具设备允许范围内进行大力上提和下放,必要时可将封隔器卡瓦拉断,然后把余下的部分打捞出来,实现解卡。若活动法不行,则把封隔器以上的油管倒出来,再下钻杆带公锥打捞,然后正转钻具上提解卡。封隔器卡瓦卡钻,还可以用震击解卡。具体做法是把封隔器以上的油管倒出,用钻杆下带震击器、加速器、安全接头、打捞工具的组合钻具,打捞封隔器,捞到后使用震击器解卡。 第六节 套管整形 套管变形或错断后,内通径减小,针对变形和错断点以下的各种工艺技术措施无法实施,导致油气水井停产或报废,而且能引发成片套损。因此,套管变形和错断后,应采取一定的技术措施进行整形扩径,捞尽井下落物后,根据井况进行密封加固修复或取套修复,也可彻底报废后侧钻修复。套管整形扩径技术是套管变形和错断井修复的前提和基础。 套管整形扩径的常用工具有梨形胀管器、旋转碾压法整形,旋转震击式整形器、偏心辊子整形器、三锥辊套管整形器和各种形状的铣锥。 第八节 套管加固 对变形、错断的套管经整形扩径打开通道,捞尽井内落物后进行加固修复,一是防止套损井段复位通径减小;二是保持套管井眼有一基本通道;三是密封加固能防止套损井段进水成为成片套损源;四是修复成本低。缺点是加固修复后,井眼内通径减少。目前加固的方法有不密封丢手加固和液压密封加固。 第十一节 电动潜油泵打捞 随着电泵井的增加,作业过程中卡泵、电缆击穿、脱落、掉泵、砂卡电泵、套管变形卡泵事故不断发生,且电泵结构复杂、外径大,加上电缆因素,人们曾一度被打捞电泵问题所困绕。 经多年攻关,已经总结出适合我国油田的一整套的打捞工艺及专用工具,为我国油井打捞技术又增添了新的一页。 一、电泵事故分类 A类:电泵起不动,原管柱等未损坏。 B类:全套电泵机组,部分电缆、油管落入井内。 C类:只剩电机组或部分电机组在井内。 二、电泵打捞 1、上下活动打捞 原管柱未损坏情况下(A类),或其它情况下捞获后,可在油管、地面设备允许的负荷内上下活动,以达到松动解卡捞获电泵的目的,且不可转管柱,更不能倒扣。 2、打捞电缆、管柱 活动无效时,对A类情况可以从电泵泄油器以上把油管与电缆全部切断,起出油管和电缆,对于B类情况,捞获后可采用震击释卡,若无效,也可采用切割或套、磨、铣等工艺把油管和电缆全部捞出。 3、打捞电泵 冲洗鱼顶,下电泵卡瓦捞筒(需要时,还要套铣电泵)对电泵进行打捞。捞获后,可用上下活动、震击释卡,若仍无效,就从泵连接螺栓处提断,一节一节地提捞,直至把全部电泵机组全部捞出。 4、破坏性电泵打捞 倒掉电机上接头,用特制工具抽出转子、定子,最后磨掉电机外壳。 一、水泥浆封固永久报废工艺技术 水泥浆封固永久报废工艺技术主要适用于严重损坏的注水井及部分需补钻调整井而需要作报废处理的油井。 1、水泥浆封固永久报废工艺原理 水泥浆封固永久报废就是利用水泥浆对射孔井段、错断、破裂部位挤注封堵,达到永久封固报废的目的。 2、施工方法 工程报废井多属井况复杂、套损严重井,一般有落物卡阻,因此按有落物的错断卡阻型井况介绍施工方法 。 1)压井 2)试提、起原井管柱 3)打印 核实套损状况、鱼顶状况、深度。 4)处理卡阻部位的落物 下击或磨铣套损部位落物,让出套损部位2~4m。 5)整形扩径 选用梨形或锥形铣鞋、平底磨鞋等进行整形扩径。 6)打捞 打捞处理套损部位以下落物。 7)通井 8)封固报废 9)探水泥面 10)试压 对灰塞试压,压力为15MPa,稳压30min,压力降不超过0.5MPa为合格。 11)完井
H. 怎么通过油压套压产水等的变化来判断井筒是否有积液
随着井底液体沉降、积聚,气井产量不断下降,同时油套环空内的气体受压缩,套管压力随之上升;当井底液体进入油管被带出后,油套环空内的气体膨胀,套管压力出现下降,产气量开始增加,如此反复出现周期性的波动。
I. 井筒壁后注浆的压力怎么算
注浆压力的确定 基岩段井壁依据井筒受注点的静水压力选用下列公式进行计算 ⑴、井筒注浆压力 Pa=P0+1 Pb=P0+3 Pc=P0+5 式中: Pa—注浆初始压力,Mpa Pb—正常初始压力,Mpa Pc—注浆终压,Mpa P0—注浆点静水压力,Mpa 式中(1、3、5)为富裕压力,壁后堵水取最低值。 ⑵、井壁强度效验。 P= K ( E 2 + 2 R0 E ) 20 × (0.5 2 + 2 × 6 × 0.5) = = 1.5MPa>Pc 2( R0 + E ) 2 2 × (6 + 0.5) 2 -3- 式中: P—注浆部位井壁能承载的压力,Mpa E—井壁厚度,取 0.5m R0—井筒的净半径,取 6m K—井壁材料的允许抗压强度,Mpa K= R 40 = = 20 Mpa n 2 R—井壁材料极限抗压强度,R 取 40 Mpa N—安全系数,n=2 注浆终压是随着受注点静水压力不同而有不同的注浆终压, 同时 以不引起围岩与井壁开裂凸起为原则。注浆时,测量人员应在井壁上 给出井筒的深度,依据深度来确定不同位置漏水点的注浆终压。