电脑高速缓存
题主,CMOS只是个技术名称,它是指制造大规模集成电路芯片用的一种技术或用这种技术制造出来的芯片,是电脑主板上的一块可读写的RAM芯片。因为可读写的特性,所以在电脑主板上用来保存BIOS设置完电脑硬件参数后的数据,这个芯片仅仅是用来存放数据的。
高速缓冲存储器(Cache)其原始意义是指存取速度比一般随机存取记忆体(RAM)来得快的一种RAM,一般而言它不像系统主记忆体那样使用DRAM技术,而使用昂贵但较快速的SRAM技术,也有快取记忆体的名称。
❷ 配置高速缓冲存储器是为了解决
配置高速缓冲存储器是为了解决CPU与内存之间速度不匹配的问题。高速缓冲存储器存在于主存与CPU之间的一级存储器, 由静态存储芯片(SRAM)组成,容量比较小但速度比主存高得多, 接近于CPU的速度。
在计算机存储系统的层次结构中,介于中央处理器和主存储器之间的高速小容量存储器。它和主存储器一起构成一级的存储器。高速缓冲存储器和主存储器之间信息的调度和传送是由硬件自动进行的。高速缓冲存储器最重要的技术指标是它的命中率。
(2)电脑高速缓存扩展阅读
高速缓冲存储器通常由高速存储器、联想存储器、替换逻辑电路和相应的控制线路组成。在有高速缓冲存储器的计算机系统中,中央处理器存取主存储器的地址划分为行号、列号和组内地址三个字段。
于是,主存储器就在逻辑上划分为若干行;每行划分为若干的存储单元组;每组包含几个或几十个字。高速存储器也相应地划分为行和列的存储单元组。二者的列数相同,组的大小也相同,但高速存储器的行数却比主存储器的行数少得多。
联想存储器用于地址联想,有与高速存储器相同行数和列数的存储单元。当主存储器某一列某一行存储单元组调入高速存储器同一列某一空着的存储单元组时,与联想存储器对应位置的存储单元就记录调入的存储单元组在主存储器中的行号。
当中央处理器存取主存储器时,硬件首先自动对存取地址的列号字段进行译码,以便将联想存储器该列的全部行号与存取主存储器地址的行号字段进行比较:若有相同的,表明要存取的主存储器单元已在高速存储器中,称为命中,硬件就将存取主存储器的地址映射为高速存储器的地址并执行存取操作。
❸ 电脑的缓存指的是什么
CPU缓存(Cache
Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存是为了解决CPU速度和内存速度的速度差异问题。内存中被CPU访问最频繁的数据和指令被复制入CPU中的缓存,这样CPU就可以不经常到象“蜗牛”一样慢的内存中去取数据了,CPU只要到缓存中去取就行了,而缓存的速度要比内存快很多。
这里要特别指出的是:
1.因为缓存只是内存中少部分数据的复制品,所以CPU到缓存中寻找数据时,也会出现找不到的情况(因为这些数据没有从内存复制到缓存中去),这时CPU还是会到内存中去找数据,这样系统的速度就慢下来了,不过CPU会把这些数据复制到缓存中去,以便下一次不要再到内存中去取。
2.因为随着时间的变化,被访问得最频繁的数据不是一成不变的,也就是说,刚才还不频繁的数据,此时已经需要被频繁的访问,刚才还是最频繁的数据,现在又不频繁了,所以说缓存中的数据要经常按照一定的算法来更换,这样才能保证缓存中的数据是被访问最频繁的。
缓存的工作原理
[编辑本段]
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
一级缓存和二级缓存
[编辑本段]
为了分清这两个概念,我们先了解一下RAM
。RAM和ROM相对的,RAM是掉电以后,其中的信息就消失那一种,ROM在掉电以后信息也不会消失那一种。
RAM又分两种,一种是静态RAM,SRAM;一种是动态RAM,DRAM。前者的存储速度要比后者快得多,我们现在使用的内存一般都是动态RAM。
有的菜鸟就说了,为了增加系统的速度,把缓存扩大不就行了吗,扩大的越大,缓存的数据越多,系统不就越快了吗?缓存通常都是静态RAM,速度是非常的快,
但是静态RAM集成度低(存储相同的数据,静态RAM的体积是动态RAM的6倍),
价格高(同容量的静态RAM是动态RAM的四倍),
由此可见,扩大静态RAM作为缓存是一个非常愚蠢的行为,
但是为了提高系统的性能和速度,我们必须要扩大缓存,
这样就有了一个折中的方法,不扩大原来的静态RAM缓存,而是增加一些高速动态RAM做为缓存,
这些高速动态RAM速度要比常规动态RAM快,但比原来的静态RAM缓存慢,
我们把原来的静态ram缓存叫一级缓存,而把后来增加的动态RAM叫二级缓存。
一级缓存和二级缓存中的内容都是内存中访问频率高的数据的复制品(映射),它们的存在都是为了减少高速CPU对慢速内存的访问。
通常CPU找数据或指令的顺序是:先到一级缓存中找,找不到再到二级缓存中找,如果还找不到就只有到内存中找了。
缓存的技术发展
[编辑本段]
最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把
CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data
Cache,D-Cache)和指令缓存(Instruction
Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium
4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。
随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。
二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。
CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB、4MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高。
现在主流的CPU二级缓存都在2MB左右,其中英特尔公司07年相继推出了台式机用的4MB、6MB二级缓存的高性能CPU,不过价格也是相对比较高的,对于对配置要求不是太高的朋友,一般的2MB二级缓存的双核CPU基本也可以满足日常上网需要了。
❹ 电脑中高速缓存系闪存么,256内存是指什么举个生活例子,谢谢啦
你好~
高速缓存包概硬件和软件两项~
硬件就在于CPU的二级缓存,硬盘的读写缓存,显卡的显存,内存的读写缓存等~
软件在于操作系统的虚拟内存等~
256一般指的是内存的大小,显卡的显存大小等~
生活例子嘛,就是你有个一盒子,里面可以装256颗钉子,你需要用240个钉子,但是怕使用途中有损耗,所以可以在盒子里多备用16颗钉子,实施上你损耗了17颗钉子,有一颗需要你再去取一下,这样就耽误了一些时间,如果你有一个能装512颗的钉子的盒子,你就可以在出发前多带17颗以上的备用钉子~
这个盒子就是缓存,缓存容量越大,运行起来越节省时间~
可能我的举例不恰当,不好意识哈~
希望我的回答对你有所帮助~
❺ 电脑的CPU缓存有什么用
1.
CPU缓存(Cache
Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多。
2.
高速缓存的出现主要是为了解决CPU运算速度与内存读写速度不匹配的矛盾,因为CPU运算速度要比内存读写速度快很多,这样会使CPU花费很长时间等待数据到来或把数据写入内存。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。
❻ 计算机中高速缓存的作用
计算机硬盘的高速缓存:
1.高速缓存的概念。缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。
2.高速缓存的作用。硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第三个作用就是临时存储最近访问过的数据。有时候,某些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。
缓存容量的大小不同品牌、不同型号的产品各不相同,早期的硬盘缓存基本都很小,只有几百KB,已无法满足用户的需求。2MB和8MB缓存是现今主流硬盘所采用,而在服务器或特殊应用领域中还有缓存容量更大的产品,甚至达到了16MB、64MB等。
大容量的缓存虽然可以在硬盘进行读写工作状态下,让更多的数据存储在缓存中,以提高硬盘的访问速度,但并不意味着缓存越大就越出众。缓存的应用存在一个算法的问题,即便缓存容量很大,而没有一个高效率的算法,那将导致应用中缓存数据的命中率偏低,无法有效发挥出大容量缓存的优势。算法是和缓存容量相辅相成,大容量的缓存需要更为有效率的算法,否则性能会大大折扣,从技术角度上说,高容量缓存的算法是直接影响到硬盘性能发挥的重要因素。更大容量缓存是未来硬盘发展的必然趋势。
高速缓存产生作用的时机:
3.作用体现及应用。 现在拥有大量数据,但最经常使用的往往只有其中一小部分。如国标汉字有6763个,但经常使用的只有3000个,其中几百个又占了50%以上的使用频率。因此人们想到,如果将这几百个放到存取最快的地方,就可以用很小的代价大大提高工作速度。高速缓存的工作原理基本就是这样。例如我们知道内存的存取速度比硬盘快得多,我们可以在一开机时就将宋体字的前3000个、黑体字最常用的500个装入内存专门开辟的区域,这样当使用这部分字的时候就可以从内存取字,其余的才会去读硬盘。内存开辟的这部分区域就叫做高速缓存,它可能只占所有字体存储量的十分之一,但可以将读写字库的速度提高几十倍。
具体看一下高速缓存起的使用。假设我们有100M数据,其中1M数据的使用频率占到了50%,又知内存存取时间只有硬盘时间的10万分之一,因此如果我们用1M内存做高速缓存存储最常用的1M数据就可以差不多将平均存取速度提高一倍。从这个例子可以看出,当数据使用越不平均,两种存储器之间的速度差越大时CACHE的作用就越大。
以上是一类使用分布固定的例子,在这种情况下,只要固定将这一部分数据装入最快的存储器就可以了。但在许多情况下,数据的使用频率是不确定的,特别它是与时间相关的。如当我们在写一篇文章时,对这篇文章的内容存取就特别频繁。而过一会儿又去修一张照片,存取操作就转移到了这张照片的数据上去,文章的数据就基本不用了。要让一个系统能够自动地根据当前数据的使用频率改变高速存储器中的内容才能使我们专门开出的高速缓存起作用。因此整个高速缓存系统应该包含调度数据的软件。
CACHE系统怎样调度数据
4.拓展知识-深入了解。 怡泓软件早在1983年就在软件内部使用了硬盘的CACHE系统,在早期内存很小的情况下有效地提高了硬盘上大量数据的存取速度。而PC DOS操作系统直到1990年的DR DOS 5.0和MS DOS 4.0中才内含了CACHE程序。从WINDOWS 3.0开始操作系统中都内建了硬盘CACHE系统,CACHE的概念也逐渐延伸到硬盘内部和CPU内部。
CACHE对数据的调度不一定只在两种存储器之间进行,如现在的CPU就有片上的一级、二级和内存共3种存储器。为了便与理解,我们都以两种存储器为例。
为使CACHE系统能够起到提高速度的作用,这两种存储器的速度必需有比较大的差异。如果用通用CPU来完成数据调度,两种存储器的速度差至少应该达到100倍以上。因为调度程序在每完成一次数据访问时至少要消耗20-30个指令周期,如果速度只差10倍,用CACHE比不用还要慢。
数据的调度并不像我们想象地那样简单。第一高速存储器中的每一个数据必需带有地址信息,因为它从第二级存储器中提出来后已经不是按顺序排列。为了避免地址信息过多而造成的空间浪费和查询时间的浪费,必需将数据分成块。块的大小也很有讲究。太小了起不到压缩时间和空间的作用,太大了读一个数据会造成数百个可能用不着的数据涌入高速存储器,反而起不到压缩空间的作用。
高速存储器中数据的地址信息查询是数据调度时运算的大头。当高速存储器很大时,它的地址表也会很长。从计算机指令发出的是对第二级存储器的存取指令,为了要看它是否在高速存储器中,必需去查询这个地址表。如果地址信息是顺序排列的,平均查询时间将是表长的一半。如果表长到了1000项,平均查一个数据地址就要500次比较。即使两级存储器的速度差达1000倍,这种方法也占不了任何便宜。一种方法是优先级排序法,即每经过一段时间的使用就根据每块数据的使用频率修改表的排列,让频率最高的数据块的地址排到最前面去,这样可以有效地缩短查表次数。这是我们过去使用的方法。Intel发明了一种抢队头的方法。即每一个数据一旦被使用,就将它放到地址表的第一位去。它的优点是重整地址表的算法最简单,缺点是地址表的排列通常不是最优化的。还有一种方法是通过散列表来用空间换时间,这种算法稍微复杂一点,但它通常可以在2次查询就找到所需的地址,不过计算散列地址也要消耗不少时间。
我们从以上算法的简单介绍就可以看出,CACHE技术不是在什么地方都可以使用的灵丹妙药,它受调度计算的很大制约。在CPU内部,两级存储器的速度差往往到不了100倍以上,如何能实现有效的CACHE调度?它其中必须有专用的调度算法部件,以保证在1/3的速度差之内完成调度运算,否则最多只能实现一级缓存。
CACHE作用的局限性
从上面对CACHE调度算法的简单介绍我们已经看到,在没有专用算法部件的情况下,只有当两级存储器速度差很大的时候CACHE才起作用。内存和硬盘的速度差通常为105数量级,因此用内存做硬盘的高速缓存通常是很有效的。
另一方面,高频使用的数据必须远小于高速缓存的大小才行,如果大于高速缓存的大小就会造成刚进入缓存的数据马上就被后来的数据挤出去,非但没有加快速度,反而增加了一道间接传递的时间。当我们用PHOTOSHOP处理的图像数据大于内存的1/3时就会出现这种情况。好在内存的速度远大于硬盘的存取速度,这点变化我们通常感觉不出来。但在CPU中,就会非常明显。CPU在处理图像数据时,每次处理的数据量都远远超过它内部的一级和二级缓存,因此它的作用将大大降低,唯一的补偿是处理程序的指令在一个操作——如锐化——中是固定的,它可以常驻高速缓存,减少读指令的时间。这时不同CPU缓存的大小对运算速度的影响就很小了。因为即使再小的缓存,也存得下操作指令;再大的缓存也存不下被操作的图像数据。
在CACHE调度中,为了保证数据的安全而做的回写操作也是阻碍效率的因素。在对数据进行写操作时,可以不将它写回二级存储器,如硬盘,一直到文件关闭甚至操作系统退出时再回写,这样的效率当然最高,但是非常不安全的。一旦一个程序崩溃,其它所有程序的数据就可能都损失了。所以现在的CACHE调度方案通常都内定必须立即回写。我们马上会想到,优化效率的一半没有了。实际情况并非如此。因为回写操作其实并不是立即发生的,它可以由一个优先级较低的线程去完成,当你在考虑怎么进一步调色时,操作系统插空将数据写回硬盘。
即使内存非常大,PHOTOSHOP也将它的每一步操作写回硬盘,这可以从PHOTOSHOP每次崩溃后都留下一个巨大的临时文件看出。因此如果我们连续对图像做旋转、变形等操作,即使用了极大的内存,CACHE作用也只发生了一半。因此要全面提高PHOTOSHOP的效率,必须用RAID等技术提高硬盘的直接读写速度。同理,硬盘上的2M或4M缓存对于动辄几十M的图像数据是毫无作用的。
❼ 电脑配置高速缓冲存储器是什么原因
配置高速缓冲器是为了解决CPU和内存储器之间速度不匹配问题
❽ 计算机高速缓存与CPU和内存是什么关系
CPU负责运算,内存负责暂时存储运算所涉及的东西,高速缓存是CPU内部集成的小容量高速内存,高速缓存和内存的区别是,缓存容量极小,但是与CPU关系密切,所以传输速度比内存快得多。
❾ 计算机中为什么要采用高速缓存器(CACHE)
是为了解决低速的外设和高速的CPU之间速度不匹配的问题。
主要由三大部分组成:
1、Cache存储体:存放由主存调入的指令与数据块。
2、地址转换部件:建立目录表以实现主存地址到缓存地址的转换。
3、替换部件:在缓存已满时按一定策略进行数据块替换,并修改地址转换部件。
在有高速缓冲存储器的计算机系统中,中央处理器存取主存储器的地址划分为行号、列号和组内地址三个字段。
于是,主存储器就在逻辑上划分为若干行;每行划分为若干的存储单元组;每组包含几个或几十个字。高速存储器也相应地划分为行和列的存储单元组。二者的列数相同,组的大小也相同,但高速存储器的行数却比主存储器的行数少得多。
(9)电脑高速缓存扩展阅读
当中央处理器存取主存储器时,高速缓存器首先自动对存取地址的列号字段进行译码,以便将联想存储器该列的全部行号与存取主存储器地址的行号字段进行比较:若有相同的,表明要存取的主存储器单元已在高速存储器中,称为命中,硬件就将存取主存储器的地址映射为高速存储器的地址并执行存取操作。
若都不相同,表明该单元不在高速存储器中,称为脱靶,硬件将执行存取主存储器操作并自动将该单元所在的那一主存储器单元组调入高速存储器相同列中空着的存储单元组中,同时将该组在主存储器中的行号存入联想存储器对应位置的单元内。
当出现脱靶而高速存储器对应列中没有空的位置时,便淘汰该列中的某一组以腾出位置存放新调入的组,这称为替换。确定替换的规则叫替换算法,常用的替换算法有:最近最少使用算法(LRU)、先进先出法(FIFO)和随机法(RAND)等。
替换逻辑电路就是执行这个功能的。另外,当执行写主存储器操作时,为保持主存储器和高速存储器内容的一致性,对命中和脱靶须分别处理。
❿ 微型计算机配置高速缓存是为了解决cpu与内存之间速度不匹配的问题
是的,因为数据从内存送到cpu内部时延很大,cpu需要等待比较长的时间,高速缓存可以将内存里面的数据buffer到cpu内部,这样cpu访问他们就很快了。